
AD-AIO? ?4 LOGICON INC LEXINGTON MA F/ 9/2
REG4JUIRIM[NTS ENGINERING GUIDE6OOK. REQUIREMENTS ENGINEERING US-ETC(U)
A. 80 0 6 SMITH OAA929-76-O100

UNCLASSIFIE D FSB-R0022-VOL-1 1 AIRMICSSO-8--2

Ehhmhmmmm
EEl2lM EEElllllnE hEEnnEEmmEEmmEEEEMhEEEEEEEE

AD A1074 4 IAIRMICS

INSTliUTE FOR RESEACH LE E
gmENTINFORMATION AND 41TE

REQUIREMEFNTS ENCINFERING GUIDEBOOK D ETC
REQ. IREMNIS E-NINEFRING NOV 2 5 1981

USING Af~AUTOMATEr '100: PS[/PSA

FINAL REPORT - Volmue 11 AIRM]CS 80-8-1

DISTW.oT~~T'U ~ ~Approved for p-,Ji-,-~.

______ _____ _ -r

SECURITY CLASSIFICATION OF THIS PAGE (iWhen nout F.tnred)

REPORT DOCUMENTATION PAGE READ CSTRUCINOSBEF'ORE COMPLETING FORM

1. REPORT NUMBER VT ACCESSION NO. 3. RECI(iENTi. CATALOG NUMBER

4. TITLE (otn Suhliti.) 5. TYPE OF REPORT A PERIOD ?r-dERED

Requirements Engineering Guidebook FINAL
Requirements Engineering Using an Automated
Tool: PSL/PSA Voluime II 6. PERFORMING ORG REPORT NUMIER

AIRMICS 80-8-2
7. AUTHOR(e) S. CONTRACT OR GRANT NUMMERIA)

DAAG 29-76-D-0100
Daniel G. Smith Delivery Order 1108

TCN 79-018
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROjECT TASK

AREA & WORK UNIT NUNMERS

LOGICON
18 Hartwell Avenue PE(62725A)

Lexington, MA 02173 PROJECT NUMBER DY1O

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U.S. Army Institute for Research in Management July 80
Information and Computer Science 13.NUMBEROF PAGES

O'Keefe Building, GIT, Atlanta, Ga. 30332 100

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlline Office) is. SECURITY CLASS. (of his report)

Unclassified
IS. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of tile Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, If different from Report)

Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on re'erie side if nlecessary amd identify by block nunber)

SYSTEM, DATA PROCESSING, REQUIREIENTS, METHODOLOGY PSL/PSA, REQUIREMENTS
ENGINEERING

-O(A95rPACT ~ii~ -AE saevere. 04% ft ne.my ad ldew'dify by block number)
Based on a general awareness of the inadequacies in requirements definition
throughout the life cycle of a system, AIRMICS has initiated a comprehensive
program for application of the latest methodologies in requirements analysis to
the Army's information system development programs. This report was prepared to
aid requirements analysts who are new to automated requirements analysis in usin
PSL/PSA by selecting a subset of PSL for initial use and in showing the relation4
ship between the manual method and the automated language support.

JAe 473 Eoro.or, OVeSsOmOLETc Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (IWhen Dta Entered)

at

REQUIREMENTS ENGINEERING GUIDEBOOK

REQUIREMENTS ENGINEERING USING AN AUTOMATED TOOL: PSL/PSA

Final Report - Volume II Logicon Report No. ESD-R0022

July 1980

For The

U.S. ARMY COMPUTER SYSTEMS COMMAND

LAcces 'o For_ j

I PT> I 9 ElI Fn ,ooirced El

just IfmcationcBy---eardb DTlC
Distribution/ Prepared by

AvailSbil-,ty CodeS
Avail and/or E,, .

D S- ,NOV 2 5 981
Dis pl ... 'i....

18 Hlartwell Avenue
Lexington, MA 02173

-DISTRI U ON -STA-TEE T A .1
Approved otr public reloose

Distribution Unlimited

A-

DISTRIBUTION STATEMENT

Approved for public release. Distribution unlimited

This Technical Report has been reviewed and approved.

Daniel E. Hocking
Computer Scientist, Comput r/
Science Division, U.S. Army
Institute for Research in Management
Information and Computer Science

John Mitchell Clarence Giese, Director
Chief, Computer Science U.S. Army Institute for Research
Division, U.S. Amy in Management Information
Institute for Research and Computer Science
in Management Information
and Computer Science

REUUIHE.ThNtS EN.GINLE~RING GUlD~kbULK

NKUIHMENrs ENGINLERING USING AN AUTOMATEU TUUL: PSIL/PSA

F~inal Report - Volume II Logicon Report No. LSD-ROO22

July 1980

Author: Reviewea by:

Daniel G. Smith Larry A. Johnson
M~artin F. MCDonoug.
Fredrick T. Cokcer

The views, opinions and recommendations expressed

in Volumes I and 11 of this document are those of

the author and do not constitute an official Depart-

ment of the Army position or policy unless so

designated.

LOGICON

PH LACE

In 1973 the Air Force initiated an advanced oevelopment project

witnin tne Electronics Systens :omiimand LAFSC/ESD) to acquire ana

apply the lSUS Project (University of Micnigan) Problem
Statement Language/ Problem Statement Analyzer (PSL/PSA) to ESU
requirements ailaiysis needs. The Air Force version of PSL/PSA
was accepted by ESD in 1974 ana was called tne user kequirements
Language/User xequirements Analyzer (URL/URA)4. In 1975 Logicon
performed an evaluation for the ESD Joint Surveillance System
(JSS) prograTt oftice on the applicability of URL/UHA as a tool
tor both the analysis of JS8 requirements and the design of tn-±
JS6. AS a result of tne JSS study, bogicon began to use URL/URA
in its system engineering support role to JSS and is continuing

the use of the tool in the development phase of tne JSS at tnis
tine.

During the past five years Logicon has broadened its experience
using UPL/URA. Additional stuaies, applications, and training
programs for industry and government nave been performed. A
formalized approac. has been developed by Logicon tor applying
UHL/UOA and Logicon has extended URL/UHA under contract to the
Air Force. In addition, bogicon has independently translated ana
Installed UL/UHA and the Loglcon extensions and noalflicatlons o
the Logicon VAX 11/780 system in Lexington, MA. Additional
extensions for such applications as automated specification
documentation generation from the URL/ORA data oases have beer
aeveloped and applied to new projects within the past year.

ThIs guidebook was developed under contract to tne U.S. Army

Computer Systems Command (USACSC), Army Institute tor Hesearch in
Management Information and Computer Science (AIRMICS). It is the
second of a two volume report for USACSC and has been prepared to
aid the systems requirements definition' and analysis process
(requirements engineering) within USACSC. Guldelines ana
standards for requirements engineering and tne use ot PSL/PSA are
presented in this guidebook.

4 UHL/UhA was also previously called tre Computer-Aided
kequirements Andlyzer (CAIA) by th'f Air Force. UHL/UHA is
currently referred to as the Computer-Aided OesIgorpecification,
and Analysis Tool (CADSAT) by the Air Force.

lo

OGI.ON

TABLE LF CONTENTS

Pdge

PREkACE
LISE UF FIGURES
LISI UF TABLES

1. INTRODUCTION .

1.1 Purpose1
1.2 Scope* * 1
1.3 Definitions 1

1 .3.1 System * 1
1.3.2 Requirements Engineering 1

1.3.3 Quality Requirements . . o 2

1.4 Contentso 2

2. OUALITY REQUIREMENTS CHARACTERISTICS o ... 4

2.1 Introduction . 4

2.2 Discrete Requirements 4
2.3 Organization of Requirements 6

2.3.1 Hierarchical Organizational Relationships . . . b

2.3.2 System Flow Relationships 9

2.3.3 Requirements Traceaoility Relationships 12
2.4 Summary I 13

3. STRUCTURED APPROACHES AND AUTOMATED TOOLS . . o 14

3.1 Structured Approaches . o . . . o 14
3.2 ISDOS Project -PSL/PSA o o o . o 14
3.3 Utility ot PSL/PSA . * 15

3.4 Guidelines for Requirements Engineering Using PSL/PSA , lb

4. EIEUIH.RiNrI Ef'GiNGEhii, PFUCE)UXE 17

4.1 Introduction o /

4.2 Identify and Review Source Documentation ;LUC; 1 .* 23

4.3 Produce Requirements Engineering Pian 6LuCA 2 . * £3
4.4 Identity System kunctions bLUCK 3 . .2

4.5 Organize Functions into a Hierarcnical bLUCK 4 . . 25

Structure
4.b Identify System Constraints bLUCK S . *2

4./ Identify System Using Activities BLUCK 6 * . 29

A.4

4. 1dotity txternaL System Inputs-Outputs bUCK I . * 31
4.v Perform intormation-Flow Analysis BbUCK b . . j1
..io structure System Informjtion bULUCr% 9 . . 3"i
4.11 Pertorm Control-bloM Analysis a LUCK 2.0 1 36

'4. I Perform ieSt Analysis 63LUCK 11 39

4.13 Prepare Specification Documentation bbuCh 12 * 40

4.14 Pertorm 'raceability Analysis LUCYK 13 * 42
4.i5 Pertorm Consistency and Completeness bLUCK 14 *4

Analysis

4.1b manage Requirements Engineering Activities blLCK 15 5b

APPENVICLS

Appendix A - Selected References*
Appendix b - selected banguage Features

Appendix C - Aostracts of Analyzer Keports 72

Appendix D - Example Analyzer Reports 2

A.k ~

LOGICON

LIST Uk FIGURES
Page

I. Developnent of Discrete and weli-Organized Requirements 5

2. Functional Hlerarcnical Structure . . .

S. I/0 Hierarchical Structure

4. Control-Flow Diagram 10

t. information-Flow Diagram

b. Requirements Definition and Analysis . . . * 20

. Requirements Engineering Procedures . . . 0 21

B. Information-Flow Diagram with PSL constructs . o 33

9. Control-Flow Diagram with PSL constructs 37

10. Requirements Traceibliity Analysis 43

11. Requirements Configuration Control 44

LIST OF TABLES

1. System Requirement Types 1

A.

LOGICON

SECVIJN I INrjDbLJCIIUN

1.1 Purpose

iis requirements engineering qidebook provines quidance ani
stancaras for aerining ana analyzing the requirements for a
systen using an automated tool (PSL/PSA). This guidebooK
acuresses the modeling of the functional requirements of a syste;n
clogical modeling) during the initial phases of a system
acquisition, the definition phase. The guidance can be appliea
to large-scale as well as smaller, less complex systems and can
oe used in various acquisition environments.

1.2 Scope

£hls guidebook is compatable witn modern structured approaches to
requirements definition and analysis anl provioes guiaance on tne
selected use of PSL/PSA. References to documentation on various
modern structured approaches and to PSL/PSA are provided. Ime
user of this guidebook may follow the approach presented herein
or tailor the approach to emphasize a particular feature of anvy
of the modern structured analysis methods cited in Appendix A.

1.3 Definitions

1.3.1 System

A composite of items, assemblies, skills, and techniques capaole
of perforaing and/or supporting a using organizations' needs. A
coiplete system'includes related facilities, items, material,
services, and personnel required for its operation to the degree
tnat it can be considered a self-sufficient item in its intended
use.

1.3.2 Pequireents Engineering

kequirements Engineering is an Iterative process of defining the
system requirements and analyzing the integrity of the
requirements. This process involves all areas of systeW
development preceding tne actual design of tne system. The
products of the requirements engineering process can be evaluateu
for completeness, consistency, testability, and traceabilty. fne
essential goal of requirements engineering is to thorougnly
evaluate the needs whicn the system must satisfy.

LOGICON PAGE 2

I. .3 Uuality Hequirements

The tern 'quallty requirements' is used throuqnout this guldeboc'
to ,Jenote system reiulrenients wlcn are comnplete, consistent,
testanle, dnd triceable. This cndxdcteristic is the result of
the requirenents being discretely identified anc well-organizei
as discussed in the sections to follow.

1.4 Contents

The remainder of this guidebook consists of three sections and
four appendices, as follows:

Section 2 - Quality Requirements Characteristics: Provides
a description of the two requirements cndracteristics:
discrete and well organized. This discussion is followed by
a description of three forms of well-organized requirements:
hierarchical structures, system flows, ana requirements
traceaoility.

Section 3 - Structured Approaches and Automated Tools:
Briefly describes the trend in structured analysis
approaches and the use of an automated tool, PSL/PSA. The
utility of PSL/PSA as a requirements engineering tool is
presented along with the various versions of PSL/PSAo

Section 4 - Requirements Engineering Procedures: Provides
the procedural framework for defining and analyzing system
requirements. The procedures consist of fifteen activities
which are explained in functional terms: namely, activities
to be performed by requirements engineers. The language and
report features of PSL/PSA whicn support each activity are
presented.

Appendix A - Selected References: Provides a list of
references primarily consisting of structured approaches to
requirements engineering and references of the pertinent
versions of PSL/PSA.

Appendix 6 - Selected Language Features: Provides a
condensed list of PSL features wnicn support the
requirements engineering activities presented in Section 4.
Cross references are provided to Section 4 and to the
various versions of PSL.

Appendix C - Analyzer Reports: Provides a list of PSA
reports which support the requirements engineering
activities presentei in Section 4. Cross references are
provided to Section 4 and to the various versidns of PSA.

LOGICON P A Gr

AefdXD- FapeAnailyzer Peports: iLrovldfes exafirpieS of

LOGICON PA(,r. 4

SECTIDN 2 (AJALLTY RUUIHEMENTh CHANACTfEH4Lr1 C

2.1 Introduction

Ciuality requirements are dependent upon tne analyst first
identifying the aiscrete requirements of the system and tnen
organizing these requirements in effective ways for furtner
analysis. 1he resulting organization is often reterrea to as a

functional or logical model, wnere tne objects in the model And
their relationships to each other provide a comprenensLve
description (speciiication) of the user needs.

initial documentation for identitying the user's systei
requirements may include e~krly planning Jocuments and
specifications for similar systems, for system interfaces, c-n,
for existing or previously defined subsystemns. In addition,
documentation derived from engineering studies and prototyping or

experimental test systems may be available, if tne engineerlnq
activities nave advanced beyond the planning and study stage,

specification documents may nave already oeen developed. These
early requirements documents usually have one prevailing
characteristic: The system requirements are not typicdily
distinguisned (discrete) or collectively defined
(well-organized).

2.2 Discrete Requirements

Figure 1 illustrates the first characteristic of quality
requirements: discreteness. Tne key to identifying discrete
requirements is to break the user needs into individual parts
(objects) whicn represent non-overlapping requirements. Discrete
requirements include system objects (functions, external and
internal inputs and outputs, etc.) and properties (statements
anout the onjects) such as constrdints and descriptions. At this
point niissln4 or incomplete requirements can ue more readily

loentifieu. This itemization arid categorization ot require.rents
introduces clarity, whereas the sources of the requirements may
be overstated, ambiguous, redundant, incomplete, and
Inconsistent. This process of itemization also provides tne
basis tor verifying the quality of the requirements and tor
assessing the ability to test the requirements in the target
system.

LOGICON

LL Ln

LJ Z: AJ

LJ MLLJ

L7

ci

C)

ci

U.)

0

C:

L

a

ci

cm -

LLJ

Li C-)

LOGICON PAGE b

2. LrganliZat Ion ot Require nents

Ine seconu cnaracteristlc of a gooo statement ot requirements is

the arrangement of the requirements in eftective ways tor
aunitional analysis and tor communicating these requirements to
ttle using agency and to design engineers. Me Identification of
discrete requirements provides some awareness ot omissions and
gdps in the requirements. This awarenef-s is furtner neigntened
Dy organizing the requirements in ways whicn Identity all tne
relationships among the discrete requirements (Figure 1). These
relationships are of three types: hierarclical organizational
relationships, systen flow relationsnips, and requirements
traceability relationslips. The following paragraphs discuss
these relationships.

2.3.1 Hierarchical Organizational Relationships

Hierarchical organizational relationships are shown by
structuring the discrete functions ano tne information
requirements (external and internal inputs ana outputs) of trie
system into nierarcnical structures. The concept of a functional
hierarchical structure (Figure k) was introduced into miliL-ry
systems development tnrouqn initial systems engineering practices
dating back to the 1940s. Tnis concept has been maintained in
military systems development and documentation tnroughout the
19bUs and is an integral part of the current military standaras
for system documentation, i.e., DoD Standard 793!.I-S [Ij and
MIL-STD-490 [2j. This form of organization provides a view of
the system as an aggregate of functions broKen into a logical
arrangement ot subordinate discrete activities wnich must te
performed. Over the course of requirements engineering many
missing or incomplete functions can be directly identified from
the functional hierarchical structure.

Tre Jiscrete system inputs, outputs (external I/U) ano the
internal information requirements (internal i/U) necessary for
tne system's operation can be similarly structured (data
structures). Tne emphasis ariin is the arranqement of the
Intorwation requirements into nierarcnical structures by OreaKing
the information into loqical subordinate parts or groupinqs

(Figure 3). A Aell-or4anizeJ data structure is effective in
communicating tne information requirements and tor Identitying

incomplete or *issinq Information requirements.

LOGICON
SYSTEM-NAME

function nc:m

A B C

AA AB AC BA BB CA CB CC

ACA ACB ACC
*

Graphic Representation

SYSTEM-NAME

A

AA...
AB ...
AC

ACA
ACB ...
ACC ...

B
BA
BB ...

C

CA
CB ...
CC ...

Indented Representation

Figure 2. Functional Hierarchical Structure

LWGION
SYSTEM I/O

ooo etc

A BC D

F I etc

BA BB BC
F I

j- "'-- --- ... et

BBA BBB BBC

Graphic Representation

SYSTEM I/O

INPUT-A ...
OUTPUT-B

BA...
BB

BBA ...
BBB ...
BBC ...
(etc)

BC...
(etc)

INPUT-C ...
OUTPUT-D ...
(etc)

Indented Representation

Figure 3. I/0 Hierarchical Structure

LOGICON PAGE 9

2.J.2 System Flow HelationsnIps

5ystern flow relationships can be snown by organizing tne discrete
requirements in terms of control floo (Figure 4) and information
flow (Figure 5). As the functions of tne system are defined, tne
control relationships oetween them can also De detinej. These
control relationships describe the logical order in which the
system activities should be accomplished to satisfy tne systeT
mission and operational requirements. Conditions which determine
tne flow direction when two or more branches occur are also
represented. Control-flow analysis provides a means of viewing
the system from an activlty-oriented perspective and is often
reierred to as functional-flow analysis. As a result of this
analysis the requirements are viewed in a weil-organized manner
an6 missing or incomplete functions and relationships between the
functions are identified. Final control-flow documentation
becomes another effective means for communicating System
requirements to design engineers.

Un the other hand, the information-flow analysis (Figure 5)
builds upon the I/O hierarchical structure (Figure 3) by
providing a means of viewing tne system as an information
processing* system. During this analysis the flow relationships
between external system inputs and resulting outputs are
identified. Ouite often the most effective means of performing -
Information-flow analysis is to trace an output back to system
inputs, either external data, messages, or stimuli. As a result
of this analysis the relationships between the associated
functions and the internal Information necessary to support the
derivation of the output are identified.

Control-flow and information-flow analysis will Identify
necessary changes and additions to previously defined functions
and constraints as well as to the hierarchial structures and
other previously defined relationships. Missing or incomplete
requirements can be determined and the deficiencies corrected.

Hequirements engineering for systems which are primarily activity
oriented may emphasize control-flow analysis over
information-flow analysis. Other systems may be primarily
Information processing oriented and, therefore, tne requirements
engineering activities may concentrate more on intormation-flow
analysis rather than control-flow analysis. in eltner case, otn
forms of analysis are involved in a total system detinition.

LOGWON

E

C3 0

0
S-

41'

WOGICON

In4-1

LjJ

E

L;

cu:

L3 4--

4I

4Jb

m5

a)

LOGICON PAGE 12

2..3 RteiUIlements 'rce,,bIlty 1elitlonsnips

lenLtittcdiL1on ot systlfli traceablilty relatLmnsnips Is arnotner

eiiective means of identifying incomplete, unnecessary and

missinq requirements. During the requirements engineering

activities, source docunents a-e referenced tor eacn requirement

identified. Requirements traceability analysis provides the

analyst WIth a means of verifying Lne requlrements by linking

eacti requirement to all forms of source documentation. Tnese

linKs, in the form of source references (sources), provide a linK

between the requirements from one set of system requirements

(originating requirements) to the allocateo requirements

contained in the next level of the modellnq or specification

process using additional references (traces). For instance, in

Do Standard 7935.i-5 the requirements may be traced from one

higher level specification to another such as troii the FO to 55,

Sb to PS etc., or in MIb-STD-490 from Type A to Type B
specifications. Relationships can also be defined to other

pertinent studies, analyses, and plans whicn are being
accomiplished concurrently witn the requirements engineering
activities, such as proiram manage-sent directives and plans,
system sizing and timing studies, prototyping, simulations, test

planning and the liKe. System test requirements (quality
assurance), as well as subsequent test plans, procedures, ana
reports, can be effectively related to the functional
specification (originating requirements). The links to
associated system plans, analyses, and studies accomplished prior
to, during and subsequent to the start of formal requirements
engineering are crucial to the overall systems engineering
concept. The traceability relationships also provide a bridge
between requirements engineering activities and subsequent design
and Implementing activities, since the requirements can be traced
from higher level functional (logical) specifications to design
specifications, to product specifications, and to system test
plans and procedures during the later phases of the system
acquisition.

Throughout the system engineering activities, the analysts must
be able to evaluate the impact of changes to the requirements.
Wnatever the reason (policy, economics, stuay or analysis
results, new or modified requirements), the analyst must be in a
position to determine the ravifications of cnanges to the systen
reuirenents as stated in various levels of speciticdtion. Grce
the area of impact is identiiied in the requirements engineering
products (functional and I/O hierarchies, control and information
flows, etc.) the traceability relationships defined during the
previous requirements engineering activities (sources and traces)
provide the capability to readily identify associated impacts to
various parts of the system functional specificatLion (logical
model) and to trace the impacts to all other associated
documentation: program directives, plans, studies and analyses,
test plans and procedures, and allocated specifications (design

LOGICON PAGE 13

and product specitications). The Impact can oe readily analyzed
aria the appropriate actions taken.

2.4 Summary

Discrete and well-organized requirements support the primary goal
of defining the operational needs of the using activity while
giving the analyst visibility and control over the system
functional definition (logical modeling) process. Discrete and
well-orgdnized requirements ar prerequisities for the creation
of good functional, design, and product specifications.

_ _ _ --

LOGICON PAGE 14

SECTION 3 SrRUCI Ur ED APPHUACHES AND AUTUMAEI'U IQOLS

3.1 Structured Approaches

In recent years a great amount of research and applications nave
been concentrated on techniques for defining, analyzing, and
documenting the requirements for systems. most of these
techniques include the term 'structured' and are primarily manual
tecnniques L141, (15], (161, (17], (18], (19J, (20]. Some
structured techniques do address the use of computer aids as a
means of maintaining the requirements and producing documentation
during the modeling process. The computer data bases are
maintained either manually or by automated tools, and, are
generally referred to as data dictionaries.

3.2 ISDOS Project - PSL/PSA

The University of Michigan's IDOS Project oegan in 19b8 to
develop a more advanced computer-aided tool called the Problem
Statement Language/ Problem Statement Analyzer (PSL/PSA).
PSL/PSA is a more sophisticated data dictionary tool whicn
provides the capability to record in an Englisn-liKe language
(PSL) the various objects (functions , inputs, outputs, etc.) of
a system being defined (the target system) and r, Iationships
between the objects (hierarchy, flow, etc.). Ine objects and
relationships are maintained in a computer data base called a
requirements data base or PSLPSA data base. ine requirements
data base can be used by the analyzer (PSA) to generate various
reports about the target system such as hierarchlcal structures
(functional and data), system flow (control and intormation) and
many others.

Since the early 1970s, PSL/PSA has been applied by a large number
of users with varying iegrees ot success. Althougn tlie tool is a
very sophisticated software tool, there is no recommended
approach for using it In developing logical models. Tnis may oe
li] in part to the research and ueveloD,'ent nature ot the ISDOS
Project or possibly a greater desire to make the tool a more
general purpose product and thereby attract a larger number of
PSL/POA users. Many of the desired Capabilities of the
structured approaches being practiced today are not easily
satisfied using PSL/PSA. Studies of PSL/PSA for large systems
definitions nave documented the need for improvements and some
improvements nave been incorporated in new versions E3),(4].
6ome of tnese improvements have been made as part of the IsuOS
Project and some nave oeen nade independently'oy various PSL/PSA
users to meet specific modeling needs tSJ.

LOGICON PAGE 15

3.3 Utility of PSL/P&A

Various versions of PSL/PSA are currently being usea in Inoustry
ano in government agencies as Indicated below.

k3.2) URL/URA (CARA UR CADSAT), an Air Force version of
kSL/PSA, University of Michigan (ISDOS Project), 1974 [b] (73.

(3.2X) 3.2 plus extensions and modifications made by Logicon
inc. for the Air Force, 1976 [5].

E4.2) PSL/PSA version available from the University of
Michigan (ISDOS Project), 1977-1976 (8], [J, 11U).

Lb.1) Most recent version of PSL/PSA available from the

university of Michigan (ISDOS Project), 1978-1979 [11], [12),

L131.

Altnough new versions, specifically 5.1, do include some

recommendations made in various studies and by the ISDOS users
group, the basic core capabilities of the tool are available In
the ezrlier releases such as the Air Force's version, URI/URA.

Learning the features of PSI/P5A as a software system alone
(lee., learning to use tne language and reports) Is in itself
time consuming. The new user may become-generally proficient in
one to six months depending upon his experience with
computer-aided techniques and the quality of available training
and training documentation. Documentation "on tfie tool, whicn
varies in quality, is generally for reference purposes and the
size and presentation of the material is most often perplexing to
the new user. The new PSL/PSA user will often wonder why a

language or report feature Is available and also which ones are
best sulted to his needs.

Even after the tool features are reasonaoly understood, the new
user must then determine the best approach to applying the tool
to his requirements engineering problem. since there are
numerous structured approaches being expounded, the user inust
cope with the additional proolem of Jetermining whicn structured
approach is best suited to his requirements engineering problem.
it the new user is unfamiliar with any structured approach, he
must become familiar with the new analysis techniques. The
perplexities of the new user can oe tnreetold: (1) learning

PS /PSA, (2) learning and/or determining which structured
approach to apply, (3) and most importantly - defining and
analyzing the target system.

LOGICON PAGE lu

.,4 Guidelines for Requirements E nqineering Using PSjL/PSA

'iniS guidebook haS been preparej t3 assist tne new user ot
PiS/PSA in applying the tool In a productive manner to the
logical odelinq ot a target system. This metnodolOgY 'as first
documented as part of Logico 's final technical report for cne
HAUC Requirements Standards Stuo, CRSS) 3. The HE5 provided an
approach to requirements definition and anitlysis and among other
stud/ results proviaed a description ot the functional
capaoilities of automated require-Dents analysis tools.

The guidance provided in this guiaebooK is intendea to aid the
neW as well as the experienced P L/PSA user by providing d
structured approach to the logical modeling process and to
Identify the current features of PSL/PSA which are best suited to
the logical modeling activities described. The user is expected
to use the references in appendices, especially those for the
version of PSL/PSA being employed, for more detailea examples of
the language and report features of PSL/PSA. The Intent of this
guidebook is to provide the framework for requirements
engineering and an overview of the utility of PSL/PSA to support
the logical modeling process.

LOGICON PAGE 1 /

ECT L)N 4 RKi Jl MtIJM' E6 (. Lr.EERING PROCEUUH S

4.1 introduction

The use of PSL/PSA must be restricted by a particular

requirements engineering approacth. A poorly defined or
inaoequate approach will result In coftly and inadequate results.
Conversely a well detined approach enhanced througn' utilizdtion
of selective features ot a tool sucn as PSL/PSA AjLl result in
sFecifications of consistently hiaher quality. A well-aefined
approach and selected use PU/PSA as presented in tnis guidebook

is strongly advised.

Requirements engineering is the method used to derive anl
document quality system requirenents. Requirements engineering
as used in this gulaeboo< is defined as follows:

Requirements Engineering is an Iterative process of

defining the system requirements and analyzing the
Integrity of the requirements. This process involves all
areas of system development preceding the actual design of
the system. The products of the requirements engineering
process can be evaluated for completeness, consistency,
testability, and traceability. The essential goal of
requirements engineering is to thoroughly evaluate tne
needs which the system must satisfy. Requirements
engineering is principally concerned with the initial
phases of tne system acquisition life cycle; i.e., the
definition phase.

Requirements engineering begins by identifying system boundaries
and defining the system in terms of functional and constraint

requirements. A functional requirement (function) is the
statement of a need 4hicn must oe fulfilled; a constraint
requirement is a restriction on the function(s) wrlicn allows a
solution to oe derlvej. Constraints fall into one of tne
cotr-;ories as illu}sti-it: in fjblf" 1.

In DerformIng re4ulreaents engineering, tunctions ard their
constraints as well As other requirements described in this
section are extracted fro;m source documents. These requirements
can then be organized into nierarcnical structures wnich reveal
gaps which m3y be hidden by tne overlappln4 and confusing
statements of the original sources. Control ano
Intormatlon-flo*s can also he explicitly defined to make tne
function-to-function ana function-to-system data interactions
visiDle. Finally, requirements can be traced from originating

LOGIICON
lh le I . System Req(u iren u lypes

The set of discrete functions which
FUNCTIONAL identify the pure design free or
REQUIREMENTS solution independent needs of the system

as a whole. The functional requirements
(functions) identify what must be accomplished while

avoiding solution statements or overtones.

How well the system
PERFORMANCE functions must be

accomplished,such as
timeliness and accuracy.
Also called performance
characteristics,
MIL-STD-490.

Influences the design
solution in a physical

PHYSICAL manner: power, size,
weight, environment,
human factors, existing
system interfaces, GFP,
etc. Also called
Physical Characteris-

SYSTEM tics, MIL-STD-490.
REQUIREMENTS

-Reliability, maintain-
CONSTRAINT OPERABILITY ability, availability,

REQUIREMENTS dependability.

(Constraints)
Identify the functional,
performance, physical,

TEST operability, and
design requirements

which will be evaluated
during .system integra-
tion and test.

The minimum or essen-
tial design and
construction require-
ments which are a
constraint on the
functional require-

DESIGN ments of the system
during the design and
construction of the

system end-items
(CIs/ CPCIs). Also

called Design and
Construction, MIL-STD-
490.

_ _ _ - '

LOGICON PAGL !'I

suurce documents through vdrious levels of system speclficitIoris
to verity that all requirements have ueen dilocated and
implemented in the delivered system.

As stated in tne definition above, requirements englneerlnj Is an
iterative process of defining the system requirements and
dndlyzing the integrity of the requirements for completeness,
consistency, testability, anu trdceability (Figure b). As tre
process continues the system requirements are defined ana
analyzed in a progressively expanding manner. The definition and
analysis activities will move from one area ot concentrdtion to
anotner as the results of previous activities reveal areas
neeaing additional work. 0o single approacn can be rigidly
detined and applied wnich can take into account the many
possibilities wnicn must me considerea. However, guidelines tor
requirements engineering and associated tasKs can be defined ana
then tailored for specific requirements enqineering applications.

This section presents a general framework for requirements
engineering as Illustrated in Figure 7 as well as recommended
PSb/PSA language and report features onich can oe aj.plied to each
activity [BLOCK]. Each block represents a unique activity whicn
can be accoiplished in defining and analyzing system
requirements. There is a continual interaction between the
activities of each block, and although eacn block appears as a
single activity, it is in fact part of a continuum. The
selection of an actual approach for a given application is one of
the tasks BLOCK 2]. In a given application, not all DIOCKS will
necessarily be performed. The blocks selectea must oe responsive
to the resources available to the project and tne objectives ot
tne analysis staft. The following is a brief description of eacn
of the 15 DIOCKs portrayed in Figure 7.

BLUCK 1 Identify and Review Source Documentation: The analysis
team becomes familiar with the pr6blem and all
pertinent background information.

BLUCK 2 Produce Requirements Engineering Plan: A plan is
developed to define the activities to be accomplished
auring BLGCKS 3-1b; i.e., project schedule, tool
features to be used, quality assurance provisions, etc.

HLUCK 3 iuentILy SySLei runctions: System tunctions are
idenLtied in the source documentation and formally
defined.

BLUCK 4 urganize Functions into a Hierarchical 6tructure: fne
functions in BLOCK J are organized so that eacn higner-
level function is represented as an aggregate of more
detailed functions.

0

4-4-3,

.4-)4j
c~ to Q

E -E
-3 Lol U.

L)W 0

-'

G11 L"I
WO ~ NA - IhsLl.

reI~l'I~

CYC
LLJ CU

7ct E

< C

w. Lii -

4-3*J4-

4--'
C:C

V) f)

u S.-

.- =3

ic

CC

0 0
V) UI-

LOGICONI

-~ E

-C 51
00

4C)

S.-

2 C3

0w 0

LOGICON PAGE 12

k3CK Identity System Constraints: Constraints for the

fun~ctions are detinel where Justifieo atia attacned to a

specilic tunction In tne functlonal hleraicny.

bLOC 0 identity System Using Activities: System using

activities (e.g., organizational units, external

systells) wnicln inte.act with the system from outsiae

the system voundary are identified dnd structurea
nierarchically.

LUCK7 Identify External System Inputs-Outputs (I/0): Inputs

and outputs to the target system are defined

concurrently wItn the using activities.

BLOCK 8 Perform InforMation-Flow Analysis: Intormnation flows

snowing the data flow between external inputs, target

system functions, information witnin tne system, and

external outputs are detined.

BLUCK 9 Structure Sy-stemn Information: External and internal

information is logically organized (i.e., data

dictionary).

bLUCK 10 Perform Control-Flow Analysis: The sequences of system
functions are defined as well as the control on the
flow paths.

BLUCK 11 Perform Test Analysis: System requirements which will

be subjected to formal testing and tne test points in

the control paths are determined.

BLUCK 12 Prepare Specification Documentation: Products of BLOCKS

3-11are incorporated into specification oocuments such
as DoD 7935.1-S, MIL-STD-490, or other approved
formats.

BLOCK 13 Perform Traceability Analysis: Requirements are traced

from one level moael to another (or from one

specification to another) to ensure that the subsequent
models or specifications such as design and product
specifications meet the users original needs.

BLOCK 14 Perform Consistency and Completeness Analysts: As

errors are exposea in previous activities, the systeia
description is refined by repeating BLOCKS 3-13 until a
complete and consistent system definition has been
achieved.

BLOCK 15 Manage Requirements Engineering Activities: During each

oi the preceding activities, project and technical
managers determine progress by the analysis team and -

the status of the requirements data oase.

LOGICON PAGE 23

in the tol iowlng dLq-rap S ezjcn rlOCK in Fli .Ure I s5 expi dlricr
In greater detail. Included in the description .ire the PSL/PSA
tool features wnicn have been selected as a Subset of the
language and analyzer CdPdOillties best suited to the

requirements engineering procedures in this guidebOOK. Alternate
features may be selected based on the application needs and as
experience is gotined in Application ot PSL/PSA.

4.2 Identity and t<eview Source Docrientition LbLJCK 11

Source documentation as used in this guidepooK includes all
recorded information on a system such ds:

o planning and user requirements documents

o specifications for similar systems, for system
interfaces, and for existing or previously defined
subsystems

o documentation Jerivel from engineering studies and
prototyping or experimental test systems

o user intervieas and associated documentation

During this tasK the requirements engineering team shall
individually review the source documentation in order to beco;ne
tamiliar with the overall system requirements. During review
sessions with other team engineers, the analysts snail perform a
general evaluation ot the requirement types (objects) containea
in the source documentation. The review of the source
documentaton and the assessment of requirement types are
prerequisites for developing the requirements engineering plan
(BLUCK 23. As the analysis activities (aLOCK6 3-141 continues,
additional source documents 4111 be identified and evaluated.

4.3 Produce Requirements Engineering Plan LBLUCK 4J

Atcer revieA ot tne source docunentation, the analysis tean snail
determine the specific approach to accomplishing bLOCKS a-15.
TnIs approacn shall take into account all available resources
incluaing personnel, schedule, and financial conslerations. The
planning snall detail tne methodology to be applied (tools,
techniques, conventions, etc.), specific tacKs to be
accomplished, personnel assignments, resource "descriptions,
schedules and milestones, preliminary arid final documentation to
be produced [bLOCK 12J, progress reviews and quality assurance
arid status reporting procedures. Ihe results snall be descrioeo

LICOr.N PAGE 2,1

in a require,nents englineerilng plan which will be updatel
trlrouqhout the analysis activities to reflect necessdry changes.
The requirements engineering plan serves to define tne objectives
a11d -leans of the analysis to be pertormel anid assists project
staff in pertorming the tasks and meeting the goals of the
project. Neh analysts and other uniformed observers will find
the requirements engineering plan useful for oecoming familar
Vitn the requirements engineering project torougnout tne
Project's life.

PSL/P*A language and analyzer features snail be determined Dy
review ot 6LOCKS 3-15, Appendices 6 and C, and tne language and
analyzer references in Appendix A. This selection stiall insure
tMut tie analysis proceeds in a uniform manner, and the PSL/PSA
features satisfy the requirements engineering project objectives.
The objective is not to build and maintain requirements data
bases using PSL/PSA, but to define, analyze, and document quality
system requirements using the oest features of eSLPSA wnicn
satisfy the analysis activities defined irn tnis guidebooK.
inerefore, PSL/PSA shall be used as conservatively as possible to
achieve tne oojectives of the project.

4.4 Identify System Functions [BLOCK 3J

During tnis task tne source Jocumentation is analyzed and the
system functions (PROCESSES), necessary to control or produce the
desired outputs from the available inputs, shall be identified.
A function is a discrete activity witnin a system. The
collection of discrete functions, defines the total activities
which must be accomplished by the system to achieve a given
objective. The functions lentified shall range from hign level
(first possible functional breakout of the system) to detailed
lower level functions (functional primitives) whicn represent
finite, distinct actions to be performed by system equipment,
computer programs, personnel, facilities, procedural data, or
combinations thereof.

Naming a function is an Important part of tne requirements
engineering process. The following conventions for developing
function names shall be applied:

o Kach function shall be given a unique name contorming to the
Lunction name of the sources or its characteristics.

o The function name shall be succinct. This increases the
ability ot the reader to retain the idea being expressed,
especially for large or complex systems consisting of many
Lunctions.

LOGUCON P(. :15

o The tunction nar,,e s5ill not i ply any preterence tor a

aesign solution, even it the source of the requirement

specifies some aspect of Jesign.

o When a function na,ne exceeds 30 chardcters, It can be

ieduced oy aoreviatinq parts of the na-pe. Since the toon
does not nave a means of rec ranq abbreviations used in a

name, a separate glossary ist be maintained. Every atteipt

snall be made to avoid abbreviations, since they decrease the

readahility of the name especidly for those unfamiliar witn

the abbreviations employed. ihe need to aooreviate is often a
sign of an ill-defined requirement or a Combination of

requirement types and/or moditiers.

o Functions which are primitives shall include a PROCEDURE
statement. PROCLOURE statements shall include any Combination

of the following: (1) Structured English stating the logical
steps which represent the function, (2) Decision Tables, or
(3) Decision Trees [151, [19J.

o ?unction names shall conform to the following constructs:

CONSTRUCr EXAMPLE

Verb-ObJect* assemble-requisition
asem-requisition-tor-publisner

Compound-Verb-ObJect prepare-and-distrio-reports

with or without modifiers, such as adjectives and/or

preprepositional pnrases.

4.5 Organize Functions into a Hierarchical Structure LSLOCK 41

In conjunction with identifying the system functions as described

In BLOCK 3, the functions shall be arranged into logical
hierarchical structures (Figure 2). This form of organization is
suited for structuring syster, functional requlrei'ents in a

logical arranqement for communicating system functions and Ehe
hierarchical relationships between the functions to design
engineers. The functional hierarchy provides a view of the
system as an aggregate of functions broken down into a logical
arrangement of subordinate discrete activities which inust be
performed. The sum ot tne activities ot the functions on a given
level are equal to the activity at the next nigher level in the
nlerarchy. This principle means the total system dctivities are
defined by the functions at the lowest level in tne hierarchy
(functional primitives). This logical form of organization is

LOGJCON PAGE 26

dl 1LJIri,1U i: ,Jl troml lnfoI 1 ldit I{I l-11Ow. ' i |,U(i. I ii'I fO t rirr [1t r) 1 -11(

L LbLUC 10J .

'ne tunctions ot tne system snall be grouped into rilyiyer levels

of organization representing the first posslole nreaKout of the

systen. Upper-level functions shall be refined by tne
identification of subordinate levels. Each level of the
hierarchy shall be limited to 2-7 functions. The limit of seven
functions has been srown to increase the human understanding ot
the system functional requirements. Should tne need exist for
more than seven functions at a given level, the analysis teain
snail review upper levels of the hierarchical structure and make
any adjustments that can be maoe to resolve the proviem.

During the course of the organization of functions into a logical
nierarchy, the names of previously defined functions may be
altered in order to conform to the logical structuring at iower
levels. On the other hand, the logical structuring nay
necessitate the creation of pseudo-function names in order to
provide a means of organizing functions unaer special ana
meaningful groupings. In addition, the hierarchical structuring
may necessitate identification or creation oi new tunctions which
were omitted during previous analysis.

If the functional hierarchy is derived from leveled data-flow
diagrams EBLOCK 8], the functional hierarchy can be cerivea as a
result of the hierarchy of parent-child relationships. This
method is preferred over other less structured means of
functional decomposition, because it provides a balance between
the decomposition of functions in parallel with the decomposition
of data flow and data structure.

The language statement which allows a function (PRUCESS) to be
hierarchically related to another is the PART/SUBPAR!
relationship within the PROCESS section. The reports wnich best
shows the functional hierarchy is the Structure keport. Other
reports display only immediate PART/SUBPART relationships:
Picture Report (with the structure option in effect) and the
Formatted Proolem-Statement Report.

4.6 Identify System Constraints [BLOCK 5]

In conjunction with the identification of system functions and
organizing functions into a hierarchical structure, the analysis
team shall identify all system constraints. Ine constraint
requirements shall be limited to performance, physical,
operability, and design. Test requirements are aodressed in
BLUCK 11. Constraint requirements shall 'be derived from
available source documentation or from the results ot trade-off
studies, feasibilty studies or advanced development studies.
Each constraint requirement shall be related to specific function

LOGICON PAGE 27

Levels 1n t p t un t La, I rdrc ny [bLUCr 'U . A constraint
dppPlleU LO d iven ltvel In tne function-il hlerarcny Impl les that
tne constraint is applicable to e ,ct lower level tunction in tnhe
hierairchy. AS the constraint dnalysis continues the coinstraints
may oe rmore specifically allocated to lower level functions in
tne functional hierarchy. Constraints which are not clearly
justitiei fron available aocu Intation shall be eliminated from
consiaeration until aocu~nented justification is available. All
constraint requirements snail be stated in specific, quantifiaole
paraneters, either as a single value or ran#e of values,
inciuding the unit of Deasura, limits, accuracy or precision, and
frequency.

During the course of identifying the various constraints imposed
on the functions of the system, the analysis team shall verify
tnat no combination ot constraints results in excessive or
unrealistic requirements [BLUCK 14J. Technical risks identified
by the analysis of constraints shall be followed up oy additional
studies to resolve areas of conflict. References to any source
docunentation or analysis and studies which support and justify
each constraint requirement shall be maintainea using SOURCES
LbLLjCK 13].

Althouqh some metnolologies for requirements engineering
empnasize deferring the Identification of constraints over
preference for ddta-flow analysis LBLOCK 8], it is better to
maintain records at the constraints as they are Identified. This
aliows the analyst a means of aeferring the constraints in a way
.r.lcn assures that each one will not be lost or forgotten and
also provides the basis from which constraint analysis may
proceed.

There are several means of identifying constraints using the
language. One way is to use the ATTRIBUTE and ATTHIBUTE-VALUE
statements. For example, the following statement shows a
performance (pf-) constraint associated with the function
"validate-time-cards".

PROCESS validate-time-cards;
ATTRIBUTES ARE pt-l-time-per-week performance-constraint;

1;te reininq of the AliZR.&Ijr can be expanded tnruugn the use Of
the bux1C1IP]iON statement and SOURCE statenient in the ATTRIBUTE
section. OESCHIPT1IhI allo.vs elaboration on tne meaning of the
constraInt (J.e., pt-l-time-per-week) by allowing text
(com-int-entries) to be entered. SUUHCt provides the means at
identityl g the source at the constraint requiremient (analysis,
stiaies, reports, etc.) and tneretore provides tar traceability
IHLOCK 1J. To expand the example, the following OLSCRIPTION and
SukCL statei.ents could be provided:

LOGICON PAGE 28

PROCESS validate-time-cards;
ATTRI6UTES ARE pf-i-timie-per-weeK performance-constraint;

DEFINE pf-l-time-er-weeK attribute;
Do6CRIPTION;

----- omment-entry ------------

SOUhCE source-identifier;

In tnIs example the first two statements define the function and
the associated constraint. The remaining statements expand upon
the constraint by renaming it and adding descriptive text and the
source of the constraint. Tne use of tile prefix (pi-) for
performance in the ATTRIBUTE name appears to be redundant with
the ATTRIBUTE-VALUE. However, the use of the prefix iiiaKes other
reports more useful, since many of the reports are sorted on
object names. For example, the Name List Report will group all
pertormance constraints together where the prefix "pf-- is used
in the ATTRIBUTE name.

The ATTRIBUTE and ATTRIBUTE-VALUE can be used for otner contraint
types. Prefixes for all constraints are as follows:

performance pf-
pNysical py- 2
design dn-
operaoility op-

The Attribute Report and Forpatted Problem Statement Report will
display the constraints (ATTRIBUIE) along with the functions
(PROCESSES) which they contraln.

Another way to express constraints is the use of MEMOS. Using
the same example, the following illustrates the application of
MENU as a constraint:

PROCESS valldate-tlmE?-zarM;
6LE-MEMO pr-l-time-per-week;

MEMO pf-l-time-per-weeK;

DESCRIPTIUN;

.. -comment entry ----------
----- C- sor-ide--ifier-s) -

6OURCE source-identitier(s);

LOGICON PAGE 29

'ht' L' .C I P 1 1 rid 'IJURCe std tements for tne ML,'u 'chieve t

s, ,e results db t e AI rRIUTES section. Here the pretix 3

OlStilnQUiS' the MdYU as a conistraint and again are useful tor

ut oaucinq ana usinu otner report outputs. Tne Structure Report.

(3.eX) ana Formatted Problem Statement Heport will display tre

constraints (4EMOs) along with the functions (PHUCE.551S) wnicn

trey constrain.

Another means for defining performance constraints inlcn involves

rates is to use the hAPPENS statement. Te HAkeEvS Statemernt

specifies the nunDer of occurrences of a function (P8UCESS) in d

given time interval. The following statements illustrate tre
HAPPENS statement to express the previous performance constraint:

PROCESS validate-time-card;
HAPPENS one lIMES-PER week;

Ihe Frequency Report and Formattea Problem Statement Report can
oe usea to display this form ot performance constraint. uther
contraint types (-py, -op, -dn) nave to be represented using
ATTHI8UTES or MEMOS.

4.1 Identity System Using Activities (BLOCK 61

Using activities (organizations, operational units, or operator

positions) which interact with the target system shall be
identified. The identification of using acitivities provides tne
oasis of Information-flow analysis BLOCK 8]. The identification

shall include the names of using organizations described in the

sources or through other determinations sucn as human engineering

studies which lead to the ilentitication of using activities.
Lower level position names, such as specific operator positions,
snall be identified and Jescribed to the level of detail required

for the associated functions.

Using the INTERFACE object and PART/SUBPART statenents, the

requirements engineer can define and structure all using

activities which interact with the target system. Identification

of using activities is best accomplisnej in coni3nction Nit1

Irrorwation-flow analysis LiLOCA bJ. As liqkFACES are

identified (i.e., external activities which are origins or

destinations of targer system products), language statements

should be prepared. The hierarchical structuring of INTERFACES

using the PAHT/SUBPART relationships is generally not required

unless this information supports the understanding of the target

system. An example entry for a usina activity is as follows:

LOGICON PA[3(u

IN[ERF ACE Keypunch-operator;
PART uata-processing-department;
KCELIVES Keypuncn-for;ms;
GENERAT-S KeypunCh-deCK;
SOURCE source-identitier(s);

Tne structure ot the using actlvitles (INTEHFACES) is provided by

tne Structure Report if tne PAkI/SUBPART relationships have been
entered. The Formatted Problen Statement Report, Extended
Picture Report, and Picture Report display IIERFACES witn
varying degrees of Informational value.

Another approach to identifying and structuring kising activities
is to treat them as PROCESsES. Tne using activity is detined as
a PKOCESS and given a nane wnlch is in tne noun form (e.tJ.
cata-processing-department). The hierarchy of using activites
can be maintained using PAHT/SUBPARf statements under the
PROCESSES. In this case one miiajor branch ot the process
structure can be dedicated to the using activities and another
branch set aside for the target system functions. Tnis approachi
still allows identification of using activities (although not
specifically by language type, INTLRFACE6), allows nierarcnical
structuring, and data flow. Data flow becomes more simplified
witn tnis approach because without the use of INTERFACE, the use
of INPUTS and OUTPUrS are no longer practical. The only
prdctical collections of data remaining are SETS, ENTIIES,
GhUUP6/ELEMENTS. This restriction is not consiaered severe. To
beginning users, this approach has been found to simplify tne
application while still effectively addressing tne needs of the
requirements definition and analysis process. The tool allows
the user to alter the type of the object from PROCESS to
INTERFACE should it be decided at a later cnate that it Is
desirable to do so. However, because of the uniquenesses of eacn
language object, a change in the type o one object can
necessitate other changes within the object being changed as well
as other objects. Therefore, it is ruggested that use of PROCESS
as a using activity should be adhered to througnout the project
once it is decided to do so.

4.d Identify External System Inputs-Outputs [13LUCK 7)

In conjunction with identityiny tne using activities, tne
analysis team shall identify the output (responses) required from

the system. Output intormatlon consists of reports needed by
usino activities as well as system messages necessary tor the
operation, maintenance, and control oi tne system. Subsequent to
each output being defined, tne associated system inputs (stimuli)
shall be Identified. Each input or output (L/) snail be given a
unique name contorming to the I/0 name in tne sources or its
cnaracteristics. Parts of an input or output shall be Identified
and named as the requirements engineering process continues

LOGICON PAGE 31

[bbu2K 9]. Heterences to source documentat1on (bouHCES) which

IdentIfy tne need tar the I/0 snail oe mdintained IBLOCK 13).

Each 1/0 snall be suplewented by a brief description Of the I/J
and its purpose.

The INPU1 and DUTPUT language objects are designea to be used as
their names imply, that is, -xternal inputs and outputs of the
target system. friese collections of information can be used to
express physical or logical Collections of data. As pnysical
collections they are thought of as containers ot aata values
wrhlch consist of GROUPS/ELLMENTS. INPUTS ana UUTPUTS may also Oe
contained in larger collections o information, INPUTS, OUIPUTS,
ana SETS. For requirements engineerinq purposes, the logical
collections are the preferred means of using the language.

Example INPUT and OUTPUT stateaients are as follows:

It4PUT time-card;
GENERATED BY keypunch-operator;
DESCRIPTION;

----- comment entry------------

SOURCE source-identifier(s);

UUTPUT Keypunch-forms;
HECEIVED BY keypunch-operator;
DESCRIP£ION;

----- comment entry ------------
---------------------- I

SOUHCE source-ldentifierLs);

1.9 Perform Information-Floo Analysis [BLOCK 8J

Uuring this analysis, the flow relationships between external
system inputs and resulting outputs shall be identified in
Intormatlon-tloA ,iaqirims (also called data flow diagrams and
oata flow graphs). triese dciirams provide tne oasis tar
determining that each I/0 is used, derived, or updated. An
effective means O information-flow analysis is to trace an
output bacK to the system input: external data, messaaes, or
stLimull, t his method permits the relationships between
associated functions and the internal information necessary to
support the derivation ot the output to be Laentitied.
Structured approacnes for information-flow analysis are described
by DeMarco 1t)J, Gane and Sarson [19], and oss (14J. The data
flow within the target system boundary can be descrJted using toe

. : . . - |-.. . . .

LOGICON PArt. J2

tollow Ing lan,.ua4te relat Ionsfhtru ds 1 ius I rat ea In 1gure 8:

USES Lhis relationsnip Indicdtes tuit a tunction (PROCESS)
on the path uses external information (INPUT*) or
internal system information (EtTIT¥) as an inout
to its'activities.

DERIVES This relationsnio indicates tnat a function (PROCESS)
on the path derives either external information
(GUTPUTS) or internal system information (ENTITY*) as
a product of its activities.

UPDATES This relationship indicates that a function (PROCESS)
on the path updates internal system information
(ENTITY*) as part ot its activities.

or their higher/lower level collections, i.e., SEIS,
GROUPS/ELEMENrS

Compound forms can also be used such as USES- TO DERIVE and USES-
TU UPDATE. These forms are better since they result in a more
accurate definition of the function's transaction and result in
more meaningful PSA reports, i.e., Picture dn Extended Ptcture
reports.

The information flow shall indicate the relationsrhip between
system functions and system Information (external ana internal
system I/O) and shall not imply any lapse in " time, or
intermediate I/O be used, derived, or updated.

For the purpose of information-flow analysis the external using
activities identified during BLOCK b are integral to the
definition of the system total information flow since the using
activities are the origins and destinations ot system external
I/0. The flow across the target system boundary (between
INTERFACES and PROCESSES, if "INTERFACES are being used to
represent using activities) shall be described using the
following information-flow relationships as illustrated in Figure
8:

GENERATES This relatlonsnip Indicates (1) a using activity
(iNTERFACE) Is tne origin of the external input
(INPUT) or (2) a function (PRUCtSS) -is the origin
of the external output (OUTPUT).

RECEIVES This relationship indicates (1) a function
(PROCESS) is the recipient of the external input
(INPUT) or (2) a using activity (INT8RFACE) is the
recipient of the external output (OUTP'UT).

LO6ICON
-~ Lc

-0 A- 4n .-.

(L) a) L) 14-

W)~ (L- a

I- In

Lii C
u) V/)4-

S- CL C34

u co

- u
tn -0

0300

SL. Co o
(1- -

0I

OV 03
LU E44-

U CD 4I

LL- (^LC

4-4-

>1.

>3 C

I 1-I

LL
w6 r-c

L1i > Li.

(JLL LA 4-
fm* n

LOGICON PAGE J4

rvo possible SetU o-, l.ljUaqe statements wnlcn, corresponds to trie
intoriNi)tiUn-tlOw daqra n in Iqure b are showr below. Lacr set

ot statements should be supplemented by a SOURCE stateTent where:

it is appropriate to maintain traceability between the fio.

requirement and sources of the requirement [BbOCK 1IJ.

SIMPbEX FORM COMPOUND EURM
-------------------------- -------------

INTERFACE a; INTERFACE a;

GENERArES b; GENERATES D;

INPUT b; INPUT b;
USED BY c;

PROCESS c;
PROCESS c; RECEIVES b;
RECEIVES b; USES u TO DERIVE e;

DERIVES e;
ENTITY e;

PROCESS f;
ENrITY e; USES e TO DERIVE h;
USED bY f; USES e TO UPDATE g;

GENERATES n;
PROCESS f;
UPDATES g; OUTPUT n;
DERIVES h;
GENERATES n; INTERFACE 1;

RECEIVES n;
OUTPUT h;
RECEIVED BY I;

INTERFACE i;

Reports which present the information flow are the Data Process
or Data Process Interaction Report, Element Process Analysis
Report and Elenent Process Usage Report, Extended Picture Report,
Formatted Problem Statement Report, Function Flow Data Diagram
Report, Picture Report, Process Input/Output or Process Summary
Report, and the Structure Report. None of these reports present
leveled data flows.

4.10 Structure System Information [bIOCK 91

During BLOCK 7, the external i/O (INPUTS, OUTPUTS) and their
superordinate and subordinate parts are defined. During BLOCK U,
the Internal I/0 (ENTITIES) and their superordlnate and
subordinate parts are defined as the Information-tiow analysis is
performed. During this activity, the external and internal

U]GICON, PAGE 3b

Information is arranged into logical hierdrcnlical structures
tdata structures) as illustrated in Figure 3. The emphasis on
the data structures Is to organize the i/O and their
superordinate and subordinate parts into logical organizations or
simply as groupings of Information. Structuring the 1/0 is an
effective means of identifying Incomplete or missing 1/0 and for
communicating the input and output requirements to design
engineers.

Parts of I/U identified during BLOCK 7 and 8 shall oe associated
witn other I/0 and organized into nierarchilcal structures.
Changes and additions to tne I/U hierarchical structures may be
required as information-flow analysis [BLOCK d) Is accomplished.
Ine upper parts of the individual 1/3 hierarcnica. Ltructures
shall be equivalent to the aggregate of the subordinate parts in
the nierarcny. During tne course of organizing the i/U into a
hierarchy, the names of previously defined I/O may be altered in
order to conform to the ddta structure being defined. On the
otner hand, the structuring may necessitate the creation of
pseudo input/output names in order tc provide an effective means
of organizing the data structures in speclal and meaningful
groupings. In addition, the hierarchical structuring Ilay
necessitate the identification of additional i/0 requirements
which were omittea during earlier requirements engineering
activities.

The identification of the I/O, its description, structure, and
otner features is called a data dictionary. The following
example describes a typical data dictionary entry for an INPUT.
Each set of statements can oi supplemented by a SUURCE'statement
where traceability is desired or required [BLUCK 1JJ.

iNPUT time-card;
CONSIST OF employee-name, employee-no, weeK-endlng-date,

project-numbers, mon-nrs, tue-nrs, wea-hrs,
thr-hrs, fri-nrs, sat-hrs, sun-hrs,
total-hrs-by-project-no, total-nrs-by-weeK-day;

DESCRIPTION;
A card used by the employee to record weekly hours
against projects throughout the work week;

SYNONYM" employee-time-card;

GROUP employee-name;
CONSISTS OF last-name, first-ndme, middle-initlal;

E6LEMENT last-name, first-name, Middle-initial;

Several reports will present various aspects ot the data
dictionary. The Contents Report provides the data structure in
an indented format beginning with the o3ject name specified (SLT,
iNPUr, OUTPUT, ENTITY) down to the lowest levei defined using the

*'-.

L.OICON PAGE 36

CUNSISTS/CUNTAINEU statemients. The Structure Report (version

5.1, with the appropriate options In effect) provides an indented
nlerarchy of the SETS, INPUTS, OUTPUTS, and ENTI£IES based on the

PAHT/SUBPART and SUBSET/SUBSETS relationships. The Formatted
Problem Statement Report provides the same data structure
(CUNSISTS/CONTAINED) information as well as DESCRIPTIONS,
8YNUNYMS, and SOURCES. Other reports which aid in development
and analysls of data structure and contents are identified in
Appenaix C.

4.11 Perform Control-Flow Analysis BLOCK 101

Control-flow analysis provides a means of viewing the system from
an activity-oriented perspective -and is often referred to as
functional-flow analysis. Control-flow diagrams liKe Figure 9
describe the sequential flow between system functions. Whereas
the information flows do not Indicate any preferred ordering of
functions, control flows adscrIbe the order in which functions
are to be activiated. In many applications these control patns
become meaningful in the understanding of the system and are
desired by'the target system user or documentation requirements.
Where control-flow analysis is desired or required, it is
recommended that the ordering of functions be prepared after
completion of information-flow analysis.

Control-flow diagrams, like information-flow diagrams, shall
indicate only the relationship between system functions and shall
not i6ply any lapse in time, or intermediate activity. Tile
sequence of functions (PROCESSES) and conditions which determine
the flow directions shall be described using the following
control-flow relationsnips as illustrated In Figure 9:

TRIGGERS This is a sequential relationship between two or
more functions (PROCESSES).

UflLIZES This relationship indicates that a function

(PROCESS) on a path is dependent upon the use ot
one or more other functions in order to accomplish
its activities. A single function or sequence
of functions mly be defined once and utilizei
as frequently as necessary in the control flo4
without having to be redefined for each use.

CONDITION A1i condition: Functions (PROCESbES) preceding
the AND must be accomplished Detore the flow

can continue.

OR condition: Any one of the alternate paths may

lead to the next function (PROCESS).

Ll - I I - I'

LOGICON - - -

u I I', c

u U

o o Q0

Cy))

CD) C), C

I-- ca F- -

C- CD -

Q0)

G 0)

LL.

C3.

co .0

tn Q) (Ii)
Q)Q -. L - -S LL L

(NLW) Gi) 4) >
.0OI0)0) mm0) LU)

-- 0, 0) D) 01 al

4- 4)-- J~)

4.) cz

ca~ < DO z C)M)

4-3
W- U-

LW)

I.-t

LOGICON PAGE JH

2Ie ise 01 tne TRIGGEHS and UTILlZE6 relationslips provides toe
basic sequence of functions (functional flow). Te addition of
CuiiPlTIONS statements modifies the functional flow oy providing
control descriptions on diverging or converging flow paths and
thereby maKes the sequence of functions d control tlow.

The control flow shall be restricted to concepts 0acKed by systei
engineering studies or the liKe which clearly resolve any
uncertainty of tecnnical risKs associated with the flow concept
descrlbed. where uncertainty exists the relationships snall be
described as tentative or not completed, as appropriate, until
subsequent analysis resolves the uncertainty. As the control
flo4 Is identiflea, SOURCES of the control requlrements (studies,
reports, etc.) shall be maintained LBLOCK 13].

One possible set of language statements which corresponds to the
control-flow diagram in Figure 9 is shown oelox. Each set of
statemrents should be supplemented by a SOURCE statement wnere it
is appropriate to maintain traceability between the flow
requirement and sources or the requirements LBLOCN 13].

PROCESS a;
IR[GGEkS b;

PROCESS o;
UI1LIZES c;
IRIGGERS d;

PRUCESS d;
TRIGGERS e,f;

PROCESS g;
TRIGGERED BY e,f;
TRIGGERED WHEN condition-name BECOMES TRUE;
TRIGGERS h,i;

PROCESS h;
TRIGGERED WHEN condition-name BECOMES TRUE;
TRIGGERS J;

PROCESS I;
TRIGGERED WHEN condition-name BECOMES FALSE;
1.'1(.GERS J;

In the above example, "condition-name" is the ooJect name
(maximum of 30 cnaracters)called a CONDITION (AND condition, and
OR condition). *The condition-name is a statement which
represents a condition which can be either in a true or talse
State. Once the condition-name is determined, the TRUE or FALSE
is' selected as appropriate to the logic of the flow being
defined.

LOGICON PAGE 39

Several reports display control-flo0w informaton. Ine Process
Chain Report provides a graphic output snownInY tne cnain of
'i.GERS, UTILIZES (5.1 onliy), and CUivO.LIUNSJ (5.1 only). A.ji
control-flow relationships are shown in the formatted Problem
Statement Report and also in the Structure Report (J.2X only).
The Dynamic Interaction Report (5.1 only), Picture, and
utilization Analysis Report (0.1 only)'also show various aspects
of control flow.

4.12 Perform rest Analysis LBLOCK 11]

Test requirements identify the system requirements wnlcn will be
evaluated during systeii integration and ,test. ine principie
objective of test analysis Is to identity wnicn areas in the
system definition shall undergo formal test and verification.
This is achieved by identifying test points on toe control-flow
paths (Figure 9). Test points snall be added to tne flow patns
at the selected test data sampling locations as the control flow
is developeu. The selection of test points snall be accomplisned
concurrent with the test planning activities.

rne association between system test plans, analyses, and studies
documented prior to, ouring, and subsequent to tne start of
formal requirements engineering is crucial to the overall
requirements engineering concept. Documented test objectives
preceding formal requirements engineering shall be analyzed. As
a result, test points in the control flows shall oe selected

whicM provide data for various test cases and support testing
objectives. References (SOURCES) shall be maintained between the
test points and associated test plans and otner supporting
documentation [BLOCK 13J.

The language has no direct means of representing test points on
the information and control flows. However, one means of
representing these test points can be achieved through the use of
the EVENT object. In this case'the EVENT denotes a point on the
flow where test (validation) data is desired during the system
testing. The procedures which will be used to analyze the
collected data can be described in the DESCRIPTION. References
(SOURCES) to test plans and procedures can be identified. A
single test case rnav be defined as an EVENT made up ot several
test points (EVENTS) using PAT/.jUBPART relationsnips. All test
cases can be structured to provide a comprehensive hierarchy of
the system/subsystem and unit level testing wnlcn *ill be
performed during system integration and test. Ine followinj
statements illustrate a test case for the control flow snown in
Igure 9:

E.VENT test-case-name;
bUBPARTS ARE test-point-a, te5t-point-b;

LOGICON PAGE 40

VtSCRIPr1ON;
comment entries describing the procedures tor
analyzing the test point data. This may be
extracted from or entered into test plans and
procedures as they are developed;

SOURCE source-ioentifier(s);

EVENT test-point-a;
CAUSED BY a;
TRIGGERS b;
DESCRIPTION;

comment entries describing the test data to be
collected;

SOURCE source-identifier(s);

EVENT test-point-b;
CAUSED BY h,i;
TRIGGERb J;
DESCRIPTION;

comment entries describing the test data to be
collected;

SOURCE source-identifier(s);

The PART/SUbPART relationships are available only In version 5.1.

Tne test cases and test points (EVENTS) will appear in numerous
reports depending on the version available. The Structure Report
(5.1) will display the hierarchy of the test cases/points based
on the PART/SUBPART relationships (5.1). The Process Chain

Report (all versions) and the Dynamic Interaction Report (5.1)
will display the test polnts (EVENTS) as part ot tile
functional/control flow. The Formatted Problem Statement Report
generated for EVENTS will provide a complete display of the test
cases/points. The lack of PART/SUBOART Telationships in ersion
3.2 and 4.2 can be worked azi'und by the analysis team using an

alphanumeric naming convention for the test case/points (EVENT
names) wnich will allow reports sucti as the-Formatted Problem
Statement Report to output ordered by the name of tne EVENTS. In
this case the Name-Gen (3.2) or Name-Selectilon (4.2, and 5.1) is
used to create a file of EVENT names ordered dipnabetically.
Then tne kor;Dntted Froolem Stdteiient Report can oe-produced. ine

result is a listing of the test cases/points In the preferred
order based on the name of tne EVENT.

4.13 Prepare Specification Oocumentation [BLOCK 12J

Specitication ioci'nents serve to record the requirements, design,
and product descriptions of a system. Sp(eclflcdtions are used

LOGICON PAGE 41

t1.Lo'1'J1ut tlhe systfm lite cycle Ajn ire ai irteLrdi L>a t of tr, e
syst ma n :1n enFnt concept: cont racting :11n development,
cent iuration manaqement, system lnteqratLion riand testing,
Ttlintenance, and modifications.

Locu-,'entatlon is developen accordinq to oitterent standards
le;eni i g on the tYPe of s steil; Oeing deiine(i. Ynere the system
rtquirenments are tor a mllitdry system which can oe satistied by
a tutoateJ data processilng (ADP) contl(luratlon of computer
nhrcdAare and sott*are, the VoD Standdrd J935.1-6, Automated Data

6ystems Documentation Standards, is usually appilea. In military
systems wnere ADP nardware ana software may ne part of a larger
system ot equipment, sucn as a weapons system, fAL-SIU-49U,
foilltary Standdra Specification Practices, may oe thne required
oocuention standard. Altnougn the formats and content
reguirements ot these two stanoards vary, each can OraA upon trie
prouucts of the analysis performed in the preceding dLWCKS.

Tne system requirements definition and analysis activities
LtUCt\S 3-111 provide the basis upon which the preparation of
specitication shall proceed. The products of BLOCKS 3-11
(tunctional and informational hierarchical structures,
information ana control fiows, etc.) shall be incorporated
1irectly into the specification documents in accordance with the
Prescribed format of the documentation standard by using the
analyzer reports as figures or appendices in the specification
documents. Additional specification document paragraph headers
and text may be required to complete the document In order to
explain the analyzer reports or provide continuity between the
reports ana the format requirements of the standard. Where
additional text is required to satisfy the documentation standard
format, the added text shail be direct and succinct. The text
shall be free of vague and ambiguous terms. The text shall use
the simplest words and phrases wnich convey the intended meaning.
Care shall be taken to ensure that the supplemental text does not

conflict with previously defined system requirements [BLOCKS
3-11]. hhere conflicts arise, the previous requirements
definitions and analysis snail take precedence, any conflicts in
the supplemental text shall be removed.

The intent of the text Is to provide supplemental understanding
of the requirements identified and analyzed previously. The
style ot writing shall empnasize snort and concise sentence
structure. Well-written sentences snail be required with a
minimum of punctuation. Punctuation snail be used to aid reading
and prevent misunderstandings. When extensive punctuation is
required for clarity, t4e sentence shall be restructured to
eliminate the deficiency. The emphasis shall be upon short and
concise sentences and the elimination of compound clauses.
Additional style, format and general instructions for preparation
of specification documents shall be accomplished as described In
DoU Standard 7935.1-S, Part 2', and HIL-STO-490, paragraph 3.2.

LOGICON PA;GE 42

Only a te* specitication types III uou Standjira /9Jb.I-S dnd
mlL,-STO-490 are usea to record the results of tile system nodelilng
adaressed in this quidebooK. Tnese are as follows:

DoD Stand3rd 193t.1-6

Functional Description ui))
Data Requirelents Uocument (CD)
System/Suosysten -Specification LSS)

MlL-STD-490

System Specification (lype A)
Development Specifications (Type B)

The formats of each of these specification types are uniquely
different and do not easily lend themselves to the outputs of tne

analyzer. As stated previously, the analyzer reports can oe used
as'tigures or as appendices to support the paragrapn requirements
of the documentation standards. where tnese documentation
standards are not requireJ, the analyzer outputs laentified in

the previous activities [BLOCKS 3-11 can be used as

specifications for the target system. However, additional
supporting text to explain the analyzer reports and provide a
comprehensive specification of tile system will be required. The

Print Requirements report (3.2X) has been developeo to provi.de

automated documentation directly from the requirements data base
as described in Appendix C and as illustrated in Appendix D.

4.14 Perform Traceability Analysis [BLOCK 13J

Traceability gives the analyst a means of verifying the

requirements by linking each requirement to the vafying forms of
source documentation such as program directives and plans,
studies, analyses, test plans, associated speciticatlons (FD, RD,
SS or Type A and b) and the like. Throughout the requirements
engineering activities the need exists for the analyst to be able
to evaluate the impact of changes and additions to the
rpqulrements (Fiqures ku ain 11). w-natevertne reason (policy,
economics, study or analysis results, engineering change
proposals, etc.), traceability provides the capaoliity to readily
identity associated impacts to the system definition as well as -

to trace the impacts to all other associated documentation.
Requirement change impacts can oe readily analyzea and the
appropriate actions taken wnere the sources and traces ot
requirements are loentitied. The linKs to ass6ciated plans,
analyses, studies, and specifications accomplished prior to,
ouring, and subsequent to the start of formal requirements
engineering are crucial to tne integrity of the system being

LOGICON

u/li
D- LA- a),

u'I Wfb LOI
1; a)i~i

> E ,

41

0eo

44-,

() S.
(AQ l CD

u 4-) v) a

0 w ci)

uA L
1 JLL

ci~j 0)4- L

Cr)

4-)

-

Cl
4-,-

LOGICON

(lb

4.w

0 u

t A

CL m m

u 0

&- > 4---C

C;

4-;

us 0~

V)-

:3

L. c 0
4fa

LOGICON P A~ 45 rt

-~:i-neJ -in I ieve.I ceJ.

lrere are two iormPs of traceability: traces tro:,i tfe originating4
reAuLrements to tn)e lugical molel and traces from the logical
moaei to otner models where the requirements nave teen allocated
such as more letailed loqlcal moels, physical designs (aesign
specitications), dnd as-ouilt pronucts (product speclrications).
[ne -UUr CES an3 tflACE-KE ' statelfer ts are employed to d'jdress Dotn
forcts ot traceability.

SOu CL statedients are useJ cur in1 the logical mDuel ing as
descrioed in b[lOCKIS 3-11 to identify the uriginating source o
tne requirement (oojects: P~MCtsS, ITERACt, SL.I, l;4PII ,
UroU T, ENT[1f, (;HUuP/LL M N'i etc.). This c:tn be aonf-, cy use of
a unique SOURCE name (source-identitier). 'tris ioeiititler is
otten the page and/or caragrdpn ot a source oocJIment. The more
sLecitic tne identifier, the easier it is to locdte the source of
the requirement, especially uy individuals wno were not involved
in tne analysis. khere multiple source documents are to be
reterenced, tne source-loentifier should begin witn a prefix
(usuilly one cnaracter is sufficient) to distinguish .,e unique
scairce. For example, J-i.1.1.2 represents paraqrapn 3.1.1.2 in a
aocuuent identified by tne project analysts as "j".

fraces to allocated requirements ire acco oplisheo using the
I Cg-KEi statement. rhe preterred method is to adi TRACL-EY
statements to the P6L/PaM data base of the logical model where
tEle requirement is first recoroeu (i.e., the originating model).
or instance, IPACE-KEY stdtewents %ould be addeu to the logical

model (originatinq model) wnen the requirements nave been
allocated or refined (expanded upon) in anotner more detail model
(allocated model). The name of the THACE-KEY (trdce-identifier),
iiKe the source-identifier for SUUCES, can bu' to tne page and/or
paragrapn of the document where the requirement was allocated or
the acLual name of the allocated requirement (object) in tne
second model as maintained in a PSL/P.SA data nase.

Tnroughout the requirements engineering activities LbLOCKS J-il)
edch requirement shall be associ-ited with tne sources of the
requirement (source docuilents). inese SOuJC£i sn-at relate t e
system requirements to all associated speciicaLlons, studies,
analyses, pldns, program manaqement airectives ani plans, system
51zing ano timig stqdls, rotntyplnc, S ItiO-]S, tEst
p Liinling, cindJ tine liKe. SUUCr, . Stdteie ts Sindl ve Dircluaeu 1r
edcn requirement type (lanqua:ie oojects) as appropriate to tne
analys1s. The source-identiteis snould be specific enoun tnat
tne requirement can De locateu on a single page at tne source
document. IRALK-SFYS Shi-ll be aiaed to the orlqinotlng P u/PSA
IaCa base hen the requireptents in the origindtinq mojel hive
*een allocated to . or e detdIled models; t i is snail De
acco!1PlIs(IPC even If the alloc,,tt:i nodel is not octuallly defined
In i PSL/P.SA data ase. I ne ns ff ot the Ik AC rL Y Should tC
eltIner the object name in tte allocated mocel (PHuCE:Ss,

LOGICON PAGE. 4b

V,It.Rt ACE, ,S6EJ, ir.PU1', UJTPU , EJ'J .I., 6HUUP/rL-L,.LE I etc.) or the
locdtiun ot t re requIreme rt In the allocdteo mouei (I.e.,
aoculent page/paraqraph numbers). Since the allocated ,,odel ,oY

not De represented in a PSL/P6A data oase, tie page/paragrapn
numners of the i equirements in the allocated docuaent are ot ten
tne only appropriate fRACE- K.Yb that Can oe dadeo to tne

originating odel. I rne a o1i owinq example snows tne
identification of SOUPCES and TRACE-KEYS tor a PkRUCL S:

PROCESS validate-time-caros;
SOURCE j-3.1.1.2,]-3.1.2.1;
fe A Cr- -6EI n-3.7.1.2, n- , t 4 . . ;

In tnis example two unique rererences (SOURCtS) nave been
loentified for the or 4inatinq requirement and tnree references
(THACE-KEYS) have beer identified as the location of tne

requirements in two other documents (n- and t-). The SOUkCE
statements indicate that the function (PROCESS)
"validate-time-cards" originated in document 'J and is discussea
in paragraphs 3.1.1.2 and 3.1.1.2.1. The function traces to
requirements allocated and refineJ in two otner Qocuments:
cocument n" pardqraphs 3.7.1.2 and 3.2.1.2.1.3 ana document It,

paragrapn 4.3.5.3.

Only a few reports display SUURCES and TRACE-KEY6. These are tne
Formatted Pronlem Statement Report, Requirements Traceauiltiy
Analyzer eeport (3.2X) and tne Structure Report (3.2X). The
Requirements Iraceability Analyzer Report nds oeen specifically
designed to analyze the traceabilty of requirements and display
tne results or the trace netween two PSL/PSA data oases In a
single report.

4.1b Perform Consistency and Completeness Analysis [BLUOC 143

Inroughout tne requirements engineerinci activities LBLUCKS 3-131
anoalysis of the consistency ana completeness of the requirements
deinition assures the integrity of tne system oeing defined.
The analyzer reports assist the requirements engineer in
cons Istency ari complet 'ne nlsan;I ysIs Dn Y I en rci.-,
conui3tency and una IIIDluity by checIni L ne syntaix t t.ie
requirenents statements (2) detectinq some types of logic errors
in the requirements statemerits and [3) aiding tne detection of
incoiiplete and inconsistent requirements statements. by far the
idjorIty Ot Inconsistencies ino Incoipletenesses are JetecteC Da"

tne requirements enrqineer as opposed to the anaLyzer. nls is
aone oy observation of tne analVzer report! as tne encineer
necomes highly associteo(with thie pronlem tnat Is holno r, oele.
Various reports nave btuilt-in analysis features wnic detil
certain classes ot syntax or logic errors.

U,

LOGICO PAGE 4/

In usinq the reports identitleQ in tne previous BLUOCb dna other

reports wnlcn may oe employed as describeo in Appendix C, the
following minimum consistency and completeness cnecks snail be
periornej.

4.1b.i Identify System F'unctlons: BLOCK 3

Are all functions (PkRCESSE53 defined in operational terins as
opposed to solution oriented terminology such as data
processing terms? Remove or rename all functions wnich imply
"now-to".

Are the functions pacKed Dy studies or the liKe which resolve
technical risks? Remove all functions which are not feasiole
or analyze the risks and resolve any uncertainty.

Are all source references (SUURCES) Identified for each
function?

ndve high level functions been oroken down Into the lowest
AJ level functions (functional primitives)? Do all functional

primitives have a PROCEDURE'defined?

Can any functions be consolidated? Can duplicated or similar
functions be eliminated or consolidatedy

Have all traces (TRACE-KEYS) been defined for each functional
primitive?

4.1i.2 Organize Functions into a Hierarchical Structure: BLOCK 4

Voes the hierarchical structure contain all functions defined?
Inat Is, are all PART/SUBPART relationshlps entered and
correct?

Does the sum of the activities of each set of lower level
functions represent the activities oi the function at the next
nigher level in the functiondl hierarchy? Are there any
missing lo.er level functions?

ones each level of the functional nierarchlcal structure
consist of 2-7 functionst If not, can the nierarchy be
restructured?

LOGICON PAG. 4d

t.1 .J Identity ;yste n Colstrslnts: Lt'Ce

tlV e all constraints [,,, tjo, AT'I R I b 01[S., hAP kNS) reen

associdte a.Iitn speciti function levels in tne tunctional
hierarcny? kre constroint requirements appllec to tne
appropriate tunctionS?

Are tne constraints identLitleo by type: cr-, py-, op-, (n- ?

DO constraints ndve source locurent references (SdURCEIa)
defined? Eact constraint snail be oac<ea by documentation
hnicn provicies the ritionale, or feaslllty for the
constraint. it no source reference Is identified or
availaDle, the constraint snail be eliminated.

Uo any combinations of constraint requirements imposed on the
functions result in excessive or unrealistic engineering
requirements, thereby increasing costs, technicdl and schedule
rlSKS during the systei aevelopment arl system life cycle?
vnere uncertainty or conflicts exist, furtner analysis shall
be pertor, ed. As a result the conflicts snli oe removeo oy
eliminating or adjusting the conflicting requirements.

Is eacn constraint requirement defined in quantitfaole terTs:
single values or range of values, including units of peasure,
limits, accuracy or precision, and frequency?

Hdve constraints been overspecified? Excessive constraints
eliminate desiqn flexibility.

Have all traces (TkACE-KEYSJ been defined for each constraint?

4.15.4 Identity System Using Activities bLUCK b

rave all using activities (organizations, operational units,
or Dositions) been identified dind related to associated inputs
and outputs;

H;ive all usin4 activity source references (SCuRCES) and traces
(I'P ACE.- K L Yb r P ,n i den i t ! _d ?

,,.ib.s identify External System inputs-Outputs: bLuC'7

have all external system I/0 been inentitiede

Have all required external 1/0 formats (ressa;es, etc.) veen
Identified ana uescrioed?

LOGICON PAGE 49

Are aLL external I/L; assoclatea witn using dCtlVItleS LbLUCK

o and tunctions 3I, OCK6 -J?

Are all external I/J source document references (SUURCES) and
traces (TRACE-KEYS) Identified?

4.Jb.b Perform Informatlon-Flow Analysis: BLOCK 0

Is trhere an information-tiow sequence defined for every
external output desired? Can every external output oe traced
to Inputs?

is each information-flow sequence complete and logically
correct? The information Llow shall indicdte only the
relationship between system functions ana system Information
(external and internal system 1/0) and shall not imply any
iapse in time or intermediate i/0 being useo, derived, or
updated.

Are all information-flow relationships (UbES, DERIVES,
UPDATES, GENLRATES, RECEIVES) Gescribed as appropriate in eacn
intormation-flow sequence?

Are all using activities LbLQCK bi associated with system
external I/O?

Is each information-flow sequence referencea to source
oocugentatlon (SOURCE) wnich established the need for the
Information-flow sequence as well as resolves any uncertainty
or technical riSKS?

4.15.1 Structure System Intormation: BLOCK 9

Does the information hierarchy structure contain all external
and Internal I/O as described in tne source documentation
(SOURCES)?

Does the sun ot the 1/O at a given level represent tne total
contents of toe I/fi *it the next hiqher level In the hierarchyY

uo the 1/0 structures represent tne contents ot eacn external
I/U (SET, INPUT, (IUTPUf, GHUUP/ELEMENT)Y tacn internal I/U
(Sr-i, ENi[1Y, GRUUP/ELEN NT)*'

Are traces (THACE-KIY6) complete for all I/u

... _i ,

LOGICOM PAGE 50

4.1b.b Perform Control-Flow Analysis: BLOCK 1U

Is each control-flow sequence complete and logically Correct?
No lapse in time or intermediate activity snail ce Inplied
between functions in tne control-flow sequence.

Are all conditions which determine the flow direction
described using tne control-flow relationships: TRIGGERS,
UTILIZES, CONDITIONI

Are initial control flows primarily functional flows? Tnat
is, are TRIGGERS and UTILIZES relationships primarily used?

is each control-flow sequence referenced to source
documentation (S(JUHCES) which establishes the need dnd
rationale for the control-flow sequence as well as resolves
any uncertainty of technical risks?

4.15.9 Perform Test Analysis: BLOCK 11

Are all test points (EVENTS) identified?

Are source references (SOURCES) to Test Cases, 'est Plans ard
Proceaures, Quality Assurance Provisions etc. identified for
each test case or point?

Are test points associated with the control flowsY That is,
is every test point related to at least one PROCESS In tne
control flow using CAUSED BY/TRIGGLRS statementsY

4.15.10 Prepare Specification Documentation: B6UCK 12

Have all requirements defined during BUCKS 3-11 been

incorporated into tne appropriate specification paragraphs as
figures or appendices witnout change?

Has supplemental text been restricted and con cisely written as
ciescrioed in 6LOC'K 12?

Has supplemental text been reviewed to identity any conflicts
oetween the text and the system requirements defined in BLOCKS
i-117 Remove any conflicts in the text or reaccomplisn the
analysis to resolve deficiencies.

LOGICON PAGE hl

*.iP.11 Peitori, Traceautlity Analysis: bLUCK IJ

r:ve SuutCrs oeen ieilned tor lI system requireenrs d
specilted in the He4uIrements EngN Ineerinq Pidn L BLUCK eJ?

have all system requirenents Awict-i nave no source references
oeen eliinated? it Ene requirement has no sources, it is not
a user rejuirenent.

nave IKAC -KEYS oeen detineu which snow tne allocated
requirements in other models or specirications as required by
tne Requirements Englneering elan [BLOCK 4)f

4.1b Manage Requirements Engineering Activities LbLLCK 151

Ine preceding 6LUCKS describe the activities to oe performea in
oeveloping a logical noJel of system requirements. During the
modeling activities, project and technical managers often need
information wnicn' describes (IJ the status ot the modeling
activities from weeK to week, (2) the quality of the requirements
derinition as maintained in tie requirevents data base, and (3)
the size and growth of tne requirements data base. Most analyzer
reports aescrioed in the preceding 6LOCKS serve tne requirements
engineers in determining the consistency and completeness of the
definition and can De used to document the system. Tnere are,
nowever, several reports which are more specifically intended for
project and technical management of the requirements engineering
activities.

Reports whicn aici monitoring the progress being made are the
Attribute keport, Data Base Summary Report, and Data Base Status
keport. Eacn ot these reports provides statistics on tne number
ot objects and relationships between objects in tne requirements
data base. User options in these reports allow a variety of
displays (counts and/or percentages) which can be Used from week
to meek or over longer periods oi time to traCK various aspects
ot the requirements data base. For instance, the following
status ATTRI UIES can oe used by the requirements engineer to
wD1Ke a statement about tne quality of the requirements (PRuCtSb,
i;ikul, OUTPUT, etc.) in tine requireivents 0ata base:

Attrioute-ftame Attrlbute-Vdlue Meaning

status amoig ambigious
status compl conplete
status incpl incomplete
status incst Inconsistent
status redun reaunbnt

... i... . _I.. _ __1_. .. i " -

LOGICON PAGE "

iI1Aise tbuftibUr'S can be :tssoclatea with any requirerient (object).
The tollowing example is similar to tne performance A'11IBUIL
Lx,,-Pe shown in (i6UJCK SJ

PkUCESS validate-time-LCrds;
ArlHiBUIES ARE, status incomplete;

In tne above exa'ople, the AIThIbUTE Is not turtner describec
usinj tne DFlNt section as was done in BLUCK !, oecause tne
naming convention described aoove for the Attribute-Names ano
Attricute-Values Is sufficient for status monitoring purposes.

'ne Attribute Report and atd Base Status report display these
attributes and attrioute-values. The project or technical
manier can therefore see the qudlity (status) of tne
requirements snift from one of poor quality (amoigious,
incomplete, inconsistent, or redundant), as mignt be the case in
tne initial stages of the analysis, to one ot nigh quality
(complete) as the requirements engineering activities are
iinisned. During the requirements engineering project, the
requirements data base will gradually approach "complete status"
as attributes are changed by the analysis team. Tne status
attributes not only report the progress Delng made, but also the
quality of the requirements themselves (ambigious, inconsistent,
redundant) as determined oy the analyst.'As the counts of eacn
status attribute change over previous weeks, the relative growth
of tne data oase becomes apparent. There are no analyzer reports
whicn aisplay the actual physical size of the requirements data
base on the computer where it is nosted or proviae information on
now Tuch storage remains.

Some reports aid in the configuration management of the
requirements data base by maintaining a nistory o changes made.
These are List Changes, the Name-List and F'ormatted Problem
Statement Reports (with appropriate options in effect), and Data
Base Status. fnese'reports and those previously mentioned are
described in Appendix C and furtner described in the Analyzer
references In Appendix A.

-O PIIO AGE 53

APPENDIX A

SELECrEi RE'ERENCES

LIJ Automated Data Systems Documentation Standards, 6tandard
193b.I-S, Office of the Assistant Secretary Ot uefense, 13
Septemoer 1971.

L2J Military Standards Specifications Practices, MIL-STD-49U,
Department of Oetense, ctooer 19b8.

LJJ D.G. Smith, P.B. Merritnew, Requirements Standards Study
(HSS), Volumes I-III, Rome Air Development Center (RADC/ISIL)
Contract No. F30bu2-17-C-U2U7, Loqicon Inc, octooer 1979.

14J AMSU CADSAI Analysis, 5AMSO Contract No. kU4/Oi-77C-00b9
(POUQOb), L6ogcon Inc., 26 September 1979.

t5J Program Documentation for Logicon Modifications and
Extensions to Cowputer-Aidel Design, Specification, and Analysis
Tool (CADSAT), Volumes 1-Ill, USAF/AFSC (ESD/UCT) Contract No.
F'1b26-7o-C-0218, 15 April 1978.

L1J User Requirements Analyzer (URA), user's Manual,
HbldO/Multics/Version 3.2 & Figures. LSU-T7-1-128, ISOS
Project, University of Michigan, USAi/AFSC: Electronic Systems
Division [ESD/TOI), Hanscom AP8, MA, March 71.

[T7J User Requirements Language (UHL) User's Manual Part I & Il,
HbI8/Multics/Version 3.2, ES6-18-7b-lf7 & ESD-TH-)8-129, ISDOS
Project, University of Michigan, USAF/AFSC: Electronic Systems
Division (ESD/TOI), Hanscom AFB, MA, March 77.

L81 Problem Statement Language (PSL) introduction and User's
Manual, PSA Version 4.2, ISUOS Project, University of Michigan,
ISUUS kef. No. 7742-0143-0, May 1977.

91 Problem Statement Anilyzer (PSA) Reports and Report Co.nmands,
Version A4.2, INDO3 Project, University of Mtcnigan, IDOUS Ret.
No. 7142-U114-1, oecenoar IjI/I.

10io Proolent Statement Analyzer LPbA) Modifier Commands. version
A4.2, IS00 Project, University of Michigan, ISDOS kef. No.

/I'2-UI4b-1, December 19/7.

111 Proolem Statement Languiqe (Psi,) Lanquage Reference Su.Dnary.
Version A3.1, IDO0 Project, University of Mlcnigjan, ISDOUS Ret.
No. 79A51-0174-4, 5evteruer 1919.

ILOG ON PAGE 54

112J Proolen Statement Analyzer (PSA) Reports and Heport
Commdnds, Version Ab.1, isuUb Pro)ect, University of Michiqgn,

1ULb Met. 1o* 19A51-Ut/3-j, August 1919.

LI1JJ Problem Statement Analyzer (VSA) Modifier Commanos, Version

A!.L, ISCUS Project, University of Micnigan, IoDUS Ref. NO.
79Abl-0178-i,

L14J D. Ross, "Structurei Analysis (SA): A Langudge for
coalmunic3tiny Ideas," IEEE Transactions on Software Engineering,
Vol. 3, No. 1, January 1971.

tlbJ T. DeMarco, Structured Analysis and System bpecification,
New forK: Yourdon, Inc., 19/8.

[ibJ G. J. Myers, Reliable Sottware Tnrough Composite Design,
Petroceilli/Cnarter, New YorK, 1 05.

[llJ E. Youroon and L. Constantine, Structured Uesign, New
lorK: ¥ourdon, Inc., 1975.

[lHJ M. JdCKson, Principles of Program Design, wew YorK, tbY,
Academic Press, 1975.

L19J C. Gane and T. Sarson, Structured Systems Analysis: Tools
and rechniques, Prentice-Hall, Englewood Cliffs, N.j., 1979.

120' Tutorial on Software Design Techniques, second edition, IEEE
Comwvrer Society, 1977.

_ _ L.

OGICON PAGE 5S

APPEUI1X B

SELECTED LANGUAGE FEATUR:S

This appendix provides a condensed list of the language features
which support the requirements engineering activities LBLOCKS1
described in this guidebooK. In general, the Language features
presented here will provide the requirements engineer witn
adequate capabilities which will make the requirements
definition, analysis, and documentation process productive and
meet the objectives of the activities expressed in this
guidebooK. This appendix provides a quick-reference list for
beginning users of the language and aids in determining the
language features to be employed. It is expected that in a given

application tnis set of language objects and statements within
the object sections will be either reduced or expanded to meet
the objectives of a specific application. Tnis list'will provide
a basis for the selection process. Further details concerning
the ianguage features are described in the language reference
documents'available for the tool version being useo .Appendix A).
Availability of any language feature which has changed or has
been 'added from one version to another is noted. in addition, a
cross reference is provided between the language feature and the
BLUCKS to which they apply.

The versions are denoted by the following numbers used in this
appendix:

(3.2) URL/URA (CARA or CADSAT), an Air Force version of
PSL/PSA, University of Michigan (ISDOS Project), 1974.

(3.2X) 3.2 plus extensions and modifications made by Iogicon
Inc. for the Air Force, 19b.

(4.2) PSL/PSA version available from the University of
Aichigan (ISDOS Project), 1977-1978.

(5.1) Most recent version of PSL/PSA availaole from the
university of Michigan (ISDO Project), 191U-19).

ine toilowing sections (Oooectsi drt corntaie-i in Lii ppenoaix:

SL.CILUN6 c~LJss 8ELUi'CL.

ATTfRI.UTE; 6LUCh'S and Ij
CU14DL'iI ULN bLUCN IV)
LEM1160 tbL.(CKS I/ - 9
INLi~T 664UCK(S 9 - j

L vPINI 6LIUCK il
GROdUP btLUCrN3I - 9
INvpul LiLUCKS 7 - 9
lriitdOACE bLLJCK 6

mtmt) bOCIK S
OUIhUT bLUCKS 7 - 9
&'HOCES6 imLUCK 3
SIEI bLaUCKS I- 9

LOGICON PAG! 51

1 .b FLt UT1tO LA UAIc. crAtdHr, ' LjM UNJ Iu ALL L tC£1l:.b (UiJr.LI J

A 1ti UTI Axt. ttrIbute-nadrre- I attribuLe-Vdlue-1, LbLJCK b ,lJ
(ttr).•

attriuute-naie-n attrlbUte-value-n; (1)

DtoCRIVTION (aesc);

(2)
--------- -------- -------- ----
----- comment-entry ------------

SY',Y (syn) synonym-nae(s ; (3)

NE11-vORD (key) keyword-name(s);

SLJUCE (src) source-identifier(s);

flmACE-KEY (t~cey; trace-ijentifier(s);

SEE-MEMO (sm) memo-name(s);

N UTr S:5
(1) A'IHIbUEES tor an object are Initially identified

(ATIRIBU1E-NAME and ATTRIBUTE-VALUE only) within the

section (object) to wnich they apply by use of the

ATTRIBUTE(attr) statement. Ihe ATTRIBUTE section (2.0)

provides the means ot elaborating on the ATTRIBUrr

through use of the statements Such as desc, syn, key,

src, tKey, and sm.

Li) Text descriptions (comnent-entries) can be used to expand
upon tne object wnere the syntax of the language does not
suffice. Comment-entries Ere free format, 12 characters
per line, maxi:mum of bV lines. Comiment-entries should oe

limited in most applications since the data base grows

considerably with tnelr use. succinct c6mment-entries
are advised.

(3) onere requirement names (objects) in this appendix end in
"(s8;", more than one object may oe Identifieo. Eacn

object is separated by a comita and the last object ends

%itn a colon.

LOGICON PE 5

. AfI'Ii UT SECL 1 NU Lt.i)C ' inmj 1 5J

AII<lbUIES are used to aetine ottler aspects about an ooject onicn
cannot oe done by other statements provided in the ianguage.
ArLIBUTES for an object are initLially icentitied LAMT~lbJTr-NAE
and AT1HIbUTE-VALI only) iitnlin the section (o6ject) to wnich
they apply by the use ot tne ATTif'iUr (attri statements as
indicated in I.0. This section provioes the means of elaborating
on tne previously Identified Ai'ItHibUTF through use of any of the
statements witnin toe AIIRIbUIE section (i.e., desc, syn, Key,
src, tKey, sm);

itiere are two ways ATTkIBUrE6- re used in this yuIeDooK: (1) as
one treans ot defining constraints LdLUCK 51 ana (2) to aetine
status attributes LBLOCK 15). Constraint and status attributes
can be defined by using the following naming conventions:

Constraint Attrioutes: EBLDCK 5J

Attribute-Name Attrioute-Value

pf-attribute-name performance-constraint

py-attribute-name physical-constraint
op-attrioute-name operability-constraint
din-attribute-name aesign-constraint

Status Attributes; (BLOCK 151

Attrioute-Name Attribute-value meaning

status ambig ambigious
status compl complete

status Incpl incomplete
status Incst inconsistent
status redun redundant

DE INE (def) attribute-name AT1+HLUTE; (1)

I I

I desc, syn, Key, src, tKey, sm i
I I

See Section I .

LOGICON PACE !9

(1) Versions J.2 and 4.2 nave a DEjFLIN section tor descrioin4
certain objects in greater detail. The AI'KiUuE is one
oDject in 3.2 and 4.2 that can oe expanded upon using
tne DEFINE section 3s snown aoove. In version 5.1 there
Is no Dhy'INE section and the ATTRIBUTE has vecome a new
section. Version 5.1 requires the DEFINP, (aetJ to preceeO
eacn section. Thus "PRUCESS process:name;" oecomes
"LEFINE PROCESS orocess-ndae;11. [tis appendix retlects
the format for edcn language section whicn is
compatabile with versions 3.2 ana 4.2; users ot version
S.1 will have to ado "DEINL. preceaing eacn section
header statement.

" ..

LOGICON FAGE oU

3. CUNDilION Sk-ClION LbLUCK IUJ

Tnis section provides tne meaus to detine the conaitions whlcn

control tne direction of system control flow. Ine condition 'ay
be initially Identified (conjtion-name only) under tne PROCESS
section uy the use of the rIUGGERED WHEN reiationship. rne
condition section provides a means ot elaborating on the
condition. In addition, tnis section aliows a previously
unidentified condition whicri was omitted In the associated
process aetinitlon to be Identified (named), associated with
tuTIctIons (PRUCESSLS) and described.

CUNO'IiC~v (cond) condition-name LBLUCK IUJ

I I

I attr, aesc, syn, Key, src, tKey., sm I
I I

I See Section 1 I

BtCUMING TWUE TRIGGERS (becq t trgs) process-name(s);
BLCUA.ING FALSE 'IRIGGERS (oecg t trgs) process-namie(s);

TRUE WHILE (t whl);

----- comment-entry ------------

-A HItE (f wl)-

----- comment-entry-

LOGICON PAGL bi

4. ~L EMENrf S t. f IU N [LU C SI - 9 J

E L %MLNr(elIe) s y ste r. -in to r n.dt 10 1 ria a; LbLuClN5 7-9J

a ttr, ciesc, syn, Key, src, tKey, sfl: I

See Section 1 1

CUS'LAU',ED IN (cntcl) I group-) LbLOCK 9J
{entity-k
Iinput-)

i output-)narne~s);

DEHIVED 8SY Cirvd) process-narnets); (1) COLCK 8J
IPDAIED BY Cupid) process-name(s); (1)bL[UCK b)
USED~ BY (Used) process-name(s); (1)(2) [BbUC\ bi

VALUr-S AkE (val) value-name(.s) 11HRU value-narle(s).j; L~LOCK 8i

N OTL

Li) See note kt) uncler tne PIOCLSS section
2,~ EMPLOYED BY (epici) In version 5.1

LOGICON P~AGE 02

* rlll SECfIUN 03LOCK'S b-9J

tN1iiiY (ent) Internal-intormatiofl-fl&e; (LLUCKS 8-9J

Iattr, desc, syn, Key, src, t~ey, sm

I see Section 1I

PAHTI UF (part) entity-name; [BLOCK< 9]
SUBiPARTS'ARE LSUbP) entity-name(s); (dLOCA 9)

CUOiS1STS OF (csts) i group-) U3LUCK' 9J
ielement-kname(s);

CLJNTAINED IN~ (cntd) set-mime(s); (1) [6LOCS 93

DER1V4.D BY (drvd) process-name(s); (2) [BL~OCK(i
UPD)AXED 6Y Cupddj process-name(s); (:I) E8LOCK 8)

Uso5y (used) process-name(s); (ZJ(3) (8LOCK bJ

NUIthS

(1) COLLECTEU IN (cltd) in version 5.1
(2) See note (5) under the PROCESS section
(3) EMPL~OYED BY (epld) In version 5.1

/

LOGIWON PACE b3

b. EVENT SECTION ibrUCK III

EVt.NI (ev) event-name; LdbOCK 1I1

I I

I attr, desc, syn. key, src, tKey, sm I
I I

See Section I I
------ ---------------- m--------

PART UF (part) event-names; [BLOCK I1]
SUW'AtArS ARE (suop) event-namets); EbbUCK lII

CAUSED BY (csd) process-name(s); LI3OCK II

lhiGGLH5 (trgs) process-name(si; LbLOCK III

MOWN PAGE b4

I. GHOUP SECI'IUN [BLACKS 7-9J

GHUUP (gr) system-Intormation-iame; LbLOCKS 7-9J

I I
I attr, desc, syn, key, src, tKeye sm I
I I

I See Section 1 I

CUNS1 TS OF (csts) (group-) BjOCK 9J
(element-kname(s);

CUNTAINED IN (cntd) (entity-) LB.OCK 9J
(input-)
(output-f
I group-iname(s);

DERIVED BY (drvd) process-name(s); (1) [BLOCh 81
UPDATED BY (updd) process-name(s); (. L13LOCK 8J
USED bY (used) process-name(s); (1)(2) [BLOC bJ

NUSS

(1) See notes (5) under the PHOCESS section
02) EMP6OYED Bi (epld) In version b.1

LOGICOM ~~:b

b. INPUT SE~C1I~IO L'LOC'\ 7-91

INd~u (inp) external-lntorrdtion-nane; LBLOCK 13

I attr, deSc, syn, key, src, t~eY, sMIn
I 1 1

I See Section 1I

CUrNSISTs OF (csts) I group-t [BLOCE 91
felemient-k name Cs);

CUNIAlNLO IN (cntd) set-name(s) (1) IBL~jC' 9)

FARI OF (part) input-name; LEIJoch 9)

SUbPARTS ARE Lsubp) input-name(s); [BLOCK 9)

GEAqtRACED BY Cgend) interface-name(s); (BLOCK bi
HEC.IVEDA BY (rcva) process-name(s); (BLOCK 81

USUbY (used) process-name~s); (2) (3) [B3LOCK b)

(1) COLLECTED IN (cltd) In version 5.1
t.2) Er4PLOiEl) BY Cepid) in version 5.1
(3) See note (5) under tne PROCESS section

WOG3CO e'AC't ob

9. IN'TLR.EACE SECIIO. [b3OCNx 6J

INTimlVACE (tntf) using-actiVity-namle(s); Ll) tbI.,CI bi

I I
I attr, desc, syn, Key, src, t~ey, sm I
I 'i

I See Section 1I

PART'f' (part) using-activity-name; ULLOCK 6j
SUbARTS ARE CSUbp) using-activity-name(s); EdL~OCK b)

(ENL.tATES (gens) Input-name(s); LI3JLCK b, dJ
RECtIVES (icvs) output-name(s); LI.8OCKs 6, dJ

NOTE~

(1) Tne PROCESS can also be used to represent using activities
in lieu of INTERFACE;St see BLOCK b.

II O&UICON PAGE b2

10. MEMU SECTIUN (bLUCK 5)

The MEMO section can be used in two ways: (1) as a means of
recording analysts notes (Note Memo) , and (2)as one means of
describing system constraints: performance, physical,
operability, and design requirements (Constraint Memo), see BLOCK
5. The name of the constraint memo 'includes tne prefixes as
indicatedin note 1.

MEMU (memo) prefix-memo-name; (1) (BLOCK 5]

I I
I attr, desc, syn, key, tkey, src I
I I:

I see Section 1 I

APVLiES TO (app) non-memo-name; (2) (BLOCK 5]

NOTES

(1) The prefix is used to distinguish the various constraints.
when the MEMO is being used to define -a constraint the
prefixes identified below shall be applied. For note memos
the prefix is omitted."

pf- performance
py- physical
op- operability
dn- design

(2) hnere the MEMO Is used to define a constraint, the name of
the memo (non-memo-name) snail be-the process-name. This
Identifies the function that is being constrained.

.. .,-.-.

LOGIC.. PAG. 0/0

LUuIFUL tout) external-intormation-nine; (8iLUC ii

Idttr, desc, syn, Key, srco tKey, sm I

See Section I

CU14blbTS UFr Lcsts) t qroup-) LbLJCK 9 'J
{ele-nent-inauae(s);

CUiiIAiNE) Iiw [cntd) set-name(s); (1) (tBLOCK(9J

IPAHI UFr (part) output-nllne; Lb(LOCK 91

SUbVAHTS Ak4E (suop) autput-nam'e(s); LBLOCI 91

GLNLAhLD BY (geend) process-name(s); LbLOC(dJ
Vi-(VL~U bY((Orva) process-naeL~S); ()L8LUClK 8J
L~tiVE~D BY-(rcvd) lntertace-na(e6.s); - ~ LdLUCK d!

LI) CULLKCfk.D IN (cltd) In version b.1
(k) See note (5) under tfle PNuJCESS section

LOG~lc PAGE bb

11. PRUCES SECTION L86UCK JJ

The PROCESS section is used to describe the target system
functions. The following Is a summary of selected PROCESS
language features which are applicaole to tne requirements
engineering activities LabOCKS] described in tnis guiaeoooK.

PROCESS (prc) process-name; (1) (BLOCK 33

- I

I attr, desc, syn, key, tkey, src, sm

I see Section 1

PART OF (part) process-name; (BLOCK 4J
SUBPARTS ARE (subp) process-name(s); BLOCK 4)

TRIGGERS (trgs) process-name(s) (BLOCK 10J
TRIGGERED*BY (trgd) process-name(s); BLOCK 101
TRIGGERED WHEN condition-name BECOMES (TRUE (2) (BLOCK 10]

(FALSE;

UTILIZES (utls) process-name(s); EBLOCK 10
UTILIZED BY Cutld) process-name(s); [BLOCK 10]

4 set-? (3)(b) (BLOCK 83
I input-)

USES (uses) I entity-?name(s);
t group-)
(element-)

(BLOCK 8)
(4)(5)

4 set-) C set-) 3
4 input-) C (DERIVE? 4 outpdt-? j

USLS (uses) 4 entity-)nameCs) E TO 4) A entity-)name(s) 1;
(group-) t (UPDATE? 4 group-? i
(element-) L (eLement-) 3

.,A

.i~-

LOGW:ON PAGE b9

(B3LOCK 83
(b)

set-k (set-) J
{ output-t L i input-) j

UERLVES { entity-name(s) t USING { entity-kname(s) 1;

(drvs) I group-) E i group-) I

element- lelement-

[BLOCK 81
(5)

I set-) L set-) I

J entity-k L I Input-k 3
UPDATES i group-kname(s) C USING (entity-kname(s) J;
(upds) ielement-) I (group-k I

I (element-k 3

GENERATES (gens) output-name(s); LBLUCK 83

RECtIVES (rcvs) input-name(s); LBLUCK 8J

PROCEDURE;

----- comment-entry -------------- (b) [BLOCK 31

NOTES:

(1) Throughout this appendix the process-name Is the actual
name of the function identified during sLUCK 3.

(2) See Condition Section, 3.0.

(3) EMPLOYS (epls) in Version 5.1. The compound torms,
USES-TO DERIVE and USES-TO UPDATE are oetter as
aescribed in note (5) below.

(4) This form is complementary to the DERIVES-USING and
UPDATES-USING statements below.

(5) The PSA information flow reports (Picture, Extended
Picture) are more meanln~tul oen using tne compound
PSD statements verses the simplex forms ot Just USES,

DERIVES, and UPDATES. In addition, compound forms can
be expressed under the SET, INPUT, OutPur, ENTITY,

GROUP, and ELEMENT sections. However, it is recommended

that the compound uses be restricted only to the PROCESS
section. Therefore, compound forms have been
presented only in tnis PHUCESS section.

(b) The PROCEDUkE statement is used to descrioe: (A) the

* -c

LO M ON PAGE 70

sequence ot operations needed to impiement the furnction
(PhdCr:8,s), e.q. Structured kngilsn, (h) Vecislon rabies,
(C) Decision Trees. PA(UC .'DURE statements snoula ne
defined for functional primitives only, 1.e, tne
functions at the Lowest level in tne functional
hierarcny. The use of comment-entries to define d
PROCEDURE shouli oe limitei just as witn DESCRIPTIONS,
see note 2, Section 1.

LOWGICON, PAGE /1

12. cET SEcrON [BLOCKS 7-9J

SEE information-name; [kLOCK /J

attr, desc, syn, key, src, tKeV, Sm I
I I
I See Section 1 I

SUBSET OF (sst) set-naie(s); [BLCCK 9J

SUSBETS ARE (ssts) set-ndimes(s); [BLOCK 91

CONSISTS OF (csts) (entity-i (1) (BLOCK 91
{ input-)
(output-)name(s);

USED BY (used) process-name(s); (2)(3) (BLOCK 81
DERIVED AY (arvd) process-name(s); (2)-- (BLOCK dJ

UPoATED BY (Updd) process-name(s); (2) (BLOCK 81

NOTLS

(1) COLLECTIONS OF (cltn) in version 5.1
(2) See note (5) under tre PROCESS section
(3) EMPLOYED BY (epld) in version 5.1

LOGICON PAGE 71

AP&t;IJ1X C

ABSTHACIS U ANALiZER REPOT'IS

This appendix contdins a lils of PSA reports and a brief
description of each. This list represents a composite of reports
available from tne various versions of the analyzer now in use.
Versions are denoted by the following nunbers adjacent to the
report titles:

(3.2) URL/URA, an Air Force version of PSL/PSA, University
of Micnigan (ISDOS Project), 1974.

(3.2X) 3.2 plus extensions and modifications made by Logicon
Inc. for the Air Force, 19)b.

[4.2) PSL/PSA version available from tne University ot
Aichigan, 1977-1978.

(5.1) PSL/PSA most recent version available from the
Oniversity of Micnigan, 1918-1979.

Some report names have been changed as new versions were

released. Many reports include new capabilities over previous
releases. The descriptions for each report provided below
encompass the most recent capabilities. Refer to the description
of the reports for the version available for detailed
capabilities and procedures for generating the reports.

PSA provides the capability to create and modify the requirements
data base using various modifier commands as described below.

PSAalso provides the capability to generate reports which aid
the 'requirements engineering activities [BLOCKSJ as described in
Section 4 of this guidebook. where a report supports the

requirements engineering activities [BLOCKS) described Jn this
guidebook, applicable BLUCKS are denoted at the end ot tne report
description. In the following paragraphs, upper case words are
used to indicate the special PSL/PSA reserved words ior objects,
relationships, and properties of the target systen nodel. For
instance, a function is represented by the PSL statement PROCESS.

LOGICON
PAGE I3

1.U Modifier Coimanos

Combine L4.2)(5.1)

Allows the requirements engineer to comnine tne informatior,
for two objects in tne requirements data base and record tne

combination as one ouject. A record ot tnlis change Is

produced in the form ot the Comoineq Names report. [All
BLOCKS]

Change-Type (3.2)
Change-Name-Type (4.2)(5.1)

Allows the requirements engineer to change the object type
defined in the requirements data base. A record of tnis
change is generated in the form of the Chdnge-Type report
(3.2) or Change-Name Type report (4.2, dno 5.1). (All
L5OCKSJ

Delete (3.2)
Delete-Name (4.2)(5.1)

Allows the requirements engineer to delete an object name or
list of names from the requirements data base. 'hen a name
is deleted all of Its relationships to other oDject names in
the data base are also deleted. A record ot the cnange is
generated in the form of the Deletion report (J.2) oriDelete
Name report (4.2 and 5.1). (All BLOCKS]

Delete-Comment-Entry (3.2)(4.2)(5.1)

Allows tne requirements engineer to delete from the
requirements data base narrative text (comment-entries)
associated witn an object or list of objects. A record of
the change is generated in the form of the Deleted Comment
Entries report. [All BaUCKSJ.

Delete-PSb (3.2)(4.2)(5.1)

Allows the requirements engineer to deJete selected language

statements in tne requirements data base. A record of tne
cnange is qer ted in tne form of the Deleted PSL report
(3.4, 4.2) or 9elete-PJL bource ListinG dn: Cross nelerencL
Heports (5.1). [All bLOCKSJ

Input-Layout (t.1)

AllowS the requirements enqineer to enter LAYOUT comment
entries in a format which can be processea by the LAYOUT
commdna. A (olumn number healinq is given tor use during

Input o LAYUUT comment entries. The Input Layout report is
oenerated to document the LAYUUr. EbLOCK IJ

- -- .- -. --- i

LOGICON PA',L I

ll.pUt-PoL, (A.2 (..2)(5. j -

A 110 s the requIrefients en:1rievr to add reqJ1rer,eritLs to t r,
requirements date dase. A record of tne aidltiOns is
generated in the torm ot the As-Is Source LISLIrJ (3.2) or
Input-PSL Source Listing and PSA Cross Reterence reports
(4.2 ana 5.1). (Ail BLOCK3J

Problenr-Name (5.1)

Allows the requiremrents engineer to enter the n -iMe of t e
problem/project into tne requirements djtd oase in order
tnat tne neadings ot the PSA reports will contain the na;e
of tne project. Tne iroolep Name report is generatej 'c
document the change of the project name. LbLUCt 15.J

Puncn-Comment-Entry (3.2)(4.2)(5.1)

Allows the requirements engineer to retrieve from tne
requirements data base only tne narrative text
(comment-entries) tor specified objects. ihe retrieved
comment entries are listed on the Punched Comrent Entries
report and/or output to a host system file. LAII bLOCKSJ

Rename (3.2)

Change-Name (4.2)(5.1)

Allows the requirements engineer to chanae the name of an
object In the requirements data base. Tne ,ena7e report
(3.2) or Change-Name report (4.2 and 5.1) Is produced as a
record of tne changes. LAII BLOCKS)

Replace-Comment-Entry (3.2)(4.1)(5.1)

Allows the requirements engineer to replace, tor a given
object name, specific narrative text (com:nent-entries)
associated with the object. The Replace Co;-uent Entries
report is produced as a record of the cnange. [All BLUCKS)

Replace-PSL (5.1)

Allows the requirements engineer the means ot replacing PSL
statements in the requtrements dita oase. record of the
chanqe is recorte:J it, tn ,p.ce-L A C e- POts,

Cross Reterence reports. (AIl bLUCKSJ

LOGICON PA 1

2.U Report Compnd s

Assertion-consistency ().I)

LIST FURMAT: Snows assertions made (and dtOut) a given
object nane dnd tne overall consistency ot AiTf nlUIE values.
U3L1CK 14J

Attribute Report (3.2)(4.2)(b.1)

TABLE kORMAT: Shows all object names in the aata base to
whicn an AITRIUTE applies and the assoclated ATTNIBUir
values for the object names. Aids manage.nent, and
completeness and consistency checking. [1Lu Ks b, 12, 11,
15]

Contents Report (3.2)C4.2)(5.1)

STRUCTURED-LISrING FOH4AT: Snows the hierarcny ot the cata

structure based on CONSISTS(CULLECTIUN)/CONTAINEU
statements. Automated consistency checKing is optional.
Report snows a concise listing of the logical information
structures to be handled by the target system. [BLOCKi(9,
12, 14]

Consists Comparison Report (3.2)
Contents Comparison Report (4.2)(b.1)

LIST-MATFIX FOMAI: Used to detect redundant or similar
data structures; used to optimize data structures. Based
on CONSISTS(COLLECTION)/CONTAINED statements. [LkOCK 14]

Consists Matrix keport (3.2)
Contents Analysis Report (4.2)(b.1)

LIST-MATRIX FORMAT: Based on CON55fS (COLLEC1iOma)/CON'TAINLt)
statement; used to detect inconplete or redundant data
structures. (BLOCK 14J

Uata Process Report (3.2)
Data Process Interaction Report (4.1)
Dard-ACtivlty Interaction (5.1)

MATRIA FORMAT: Snows interaction between activities
(PRUCS5E/INTEHFACES) and data objects (STI , INPUTS,
OUTPUrS, ENTITIES, GRLUP , ELEMENTS); usea to detect
incompletenesses or inconsistencies in data used, includlng
data derivation. Also can be used in data-tLow analysis;

used by design engineers to plan the logic of tarqet systei
using the data-activity dependencies. [bLUC bi

-..-- .

LOGICON PAGL 7b

Cdit a 8 i se 6 U,1mi.ar V (3.2 J)~) C

lAbE L ORMA'T: Tecnnical and management report provlcir'
selected presentation of progress being made Lstatus) on tne
target system. Compared with previous reports; tne cndnges
denote progress. ALSo sno~s incolnplete (undetined) oojects.
18LOCKS 14, 15]

Data base Status (3.2X)

TABLE FORMAT: Technical and management report providing a
listing of requirenents (PROCESS and MEMO ouiects) ordereo
according to the sources oi tne requirements; Tne report
includes sources, the PROCLSS/M.MO object name, SYi4ONYM, a
cross reference to the structure report, a status attribute
value (una,,bigious, complete, Incomplete, Inconsistent,
redundant, or other user defined attributes) and tne number
of times the PRUCESS/MEMO has been revised. The remaining
columns indicate counts showing the status of tne
PROCESS/MEMO such as tne number of synonyms, descriptions,
Keywords, sources, traceKeys, as well as flow relationsnips
(triggers, utilizes, derives, receives, etc.). This status
count is controllea by user option and the display can be
changed to satisfy monitoring needs. The report can be
compared with previous reports, the changes denote progress.
It is also useful in cnecking the completeness of tne
analysis of existing source documentation. LBLOCKS 14, IbJ

Dictionary Heport(3.2)(4.2)(5.l)

NARRATIVE & OUTLINE FOHMAT: This report presents selective
information on an object (object-name, DESCRIPTION, SYNONiM,
KtYbOROS, ATTRIBUTES); a subset ot the information
presented in the Formatted Problem Statement report.
(BLOCKS 12, 141

Dynaic Interaction (5.1)

MATRIX FORMAT: Shows system sequencing and dynamic states,
tnat is, functional/control flow arid events/conditions.
Similar intormation Is presented in the Process-Cnaln

report, but this report Provides a matrix representation and
provides completeness ana consistency diagnostics. [BLOCKS
Lu, £1, 1q]

Element Process Analysis Repott (4.2)(5.1)

TABLE & MATRIX EORMI4r: Aids analysis ot interaction oetween
system data and PHOCL-Ssks. Designed to accompany the
t1ement Process Usage feport. [BLuCKS 8, 141

A-'4

LOGICON P AGE 7/

lenent Process Usde Report (>.,e) tt.1)

TABLE & M'ATRIX FGHMAT: srio.s interaction oet~een lowest
level data structure objects (usually KLEMpE~fS) to lo*sLt

level PROCESSES; consistency and completeness cnecKing
determines tnat each PkUCLSSFS interacts vitn some systerm
data. Aids in cheCKfln(t(f redundant data structures. may
be used in conjunction with the Element Process Analysis
Report. [BLOCKS d, 143

Extended Picture Report (3.2)4.i3(t.13

GRAPHIC FORMAT: A graphical network showing structures for

system data or activities (PRUCESSES/iNiEEAC.SJ and data
flow into, within, dnd out 0 the target system. 1dLOCKS 6,
12, 14J

Formatted Problem Statenient(3.2)(4.2)(.i)

NARRATIVE & OUTLINE FJR'4AT: bescrioes an ooject and its

relationships to all other oojects, and other descriptive
entries aoout the ooject. Provides a complete display of
all information about a given object (i.e., a complete

specification of cowputer maintained information on tne
object), formatted in the same mdnner as it ouLd have been

-originally entered into the data oase. See also Structure
Report version 3.2X. (Al.I LUCKSJ

Frequency Report (3.2)(4.2)(b.1)

LlSTIiG FORMAT: Presents system perforMdnce (HAPPENS
statements) relative to specific INrERVALS. Aids checKing
all objects related by trequency, understanding the various
parts of the system with respect to trequency, and tne
amount of input/output to be handled by the target system.
LBLOCKS 5, 12, 141

Function Flow Data Diagram (t.1)

GRAPHIC For(4Ar: Presents a siriqle activity LP8OCESS or

INTENFACE) centered on the [dje with all aata oolects
flowing into the activity on tre left and all outputs

bYNuNm/B are optlDnilly Jdsplayed. 6iflntIly ditterent
presentation In the Picture Report and Process Sumn.iry
Report. LBLOCKS d, 14)

Identifier Information Report (3.2)
Identifier Andlysis Report (4.fl(.l)

MATRIX FORMAT: Snows all information based on tne use ot
IDEN1iFIERS for ENT£ITIEb, liPUI'S, and JUIPUTS; alas in

completeness and consistency checking. LbbLICK 14J

LOGICON PAGE 's

KeYAord In Context (K*iC) Report (J.2)(4.2)(b.1)

L1SIING FOIMAT: Presents logical qroupin ot object naies
and permutations ot names as maintained in the data rase;

used for consistency checKing or to locate oO]ect names itlie:i
only part of the name is known or assumed. (bLOCK 143

Layout Report (b.1)

NARRATIVE & OUILICIE: A report snowing the layout comment
entries. LliOCK 143

List Changes (4.2)(5.1)

LlSf FORMAT: Shoms time and date of each cnanae to the oata
base and the modifier command used; simildr intormation Is
available as an output option witn hNie-bist ana
Formatted-Problem-Statement Reports. Usetul in management
of the data oase. See also Data base Status report revision
count. [BLUCKS 14, 153

Name-Gen (3.2)
Name-Selection (4.2)(5.1)

LIST FORMAT: Tis Is a report command wnicn generates a
file of object names from tne data base using a user-oerinea
selection statement. Used to prepare a list or names to be
used as input for generation ot other reports. See cowinanu
parameter description (input-Source) for most reports. [All
bLOCKSJ

Name List (3.2)(3.2X)(4.2)(5.1)

LisT FORMAT: Lists all names (ordered dlpnabeticaliy or
grouped by object type) in the data badse dlong oitn tne
designation of type, synonyms and sources L3.2X only).
Useful as a directory and provides alphabetfcal grouping
which is useful in checking on conventions in ndming objects
sucn as the use of prefixes in the object name. [All
tsOCKSJ

Picture Report (3.2)(4.2)(5.1)

GkAkHIC FURmAi: inows a single object (Ifi(lstrACL, i KdCro,
S'r, INPU r, UUT'PUT, GRUUP/,_;LMENT) and its immediate
structure and/or data flow. Useful for nign level grapnics
(snapshots) of system requirements ana can be usetul in
structured walKthiroughs as a communications media between

analyst and tarlet system user. Usea for completeness and
consistency checking. See also Function Flow ata Diagra'i,
and Process Summary ieport. LbLOCKS 4, 6, 8, 1U, 12, 141

LOGIIONA .Ii

Print kequirements keport (J.X)

LIST FURMAT: A specification document snowing systen
tunctions (PHOCESSES) and constraints presentea in the order
of the hierarchical structure of functions. The automated
specification document includes narrative text
tcomment-entries) in assrclation with tine tunctions and
constraints whicn they describe. The report is used as an

interface document between the requirements engineer and the
target system user and/or to provide intermediate and final
documentation (specifications) of the functional
requirements of the system. Tne report is functionally
equivalent to DoD Standard 7935.1-6 and AIL-S1i0-49U
specification requirements. [BLOCK 12J.

Process Chain Report (3.2)(4.2)(b.i)

GRAPHIC FORMAt: Shows system sequencing and aynamic states;
that is, functional/control flow and events/conditions. A
pictorial network of dynamic relationsnips oetween objects
such as PROCESSES, EVENTS, CONOITIDS, INPUTS, OUTPUTS. The
Dynamic Interaction Report provides similar intormation In a
matrix format. [BLOCKS 10, 11, 12, 143

Process Input/Dutput (3.2)
- Process Summary (4.2)(s.I)

STRUCTUREU-LIST FORMAT: Shows a list of PRUCEbSES followeo
by any description of the PROCESS and INPUTS and OUTPUTS of
each process. Useful in providing a general description of
the target system PROCESSES and associated INPUTS and
OUTPUTS. Similar Information provided Dy tne unction Fiow
Data Ulagram and Picture Heport. [BLOCAS 8, Id, 14]

Punched Comment Entries (3.2)(4.2)(5.1)

LIST, NARRATIVE & OUTLINE FORMAT: Snows narrative
descriptions (comment-entries) about an object; alas
completeness and consistency cnecKing. [BLuCK 14J

Relation Structure (4.2)(5.1)

TABLE & MAIRIX FORMAT: Presents data structure information;
used oy requireients engineers for completeness niJ
consistency checking of the logical lata structure model;
used by design engineers to derive alternate design
structures for the target system data bases. LCLOCK 141

Requirements Traceability Analyzer (3.2X)

TABLE FORMAT: This report compares one data base to another
by tracing requirements (onJects) from oni oata base to
another. The trace is performed in botn directions,

4

LOGICON PAGL 8U

forwards and oackwards. Xne traceability is pertormea using
the TRACEKEY relationsnips in one data oase to arl

object-naite (usually a source document pardqrapn number,

I.e., an identifier for the source of the requirement) in

another data base. Requirements wnich do not trace either

torward or oackward are listed. The main report displays
the requirement (object-name) of one data base on the left

side with tne requirement (ooject-name) in the second data

base presented on the left side. The sources of the
requirements are also displayed. This report is useful in
tracing requirements from one data base to another.
Applications include tracing higher *level' requirements
represented in one data base model to the allocated

requirements as represented in the second data oase mooel.
This report Is a concise presentation of the traceability of

requirements and provides completeness analysis of tne
traceability of requirements from one system model to
another. [8LJCKS 13, 14, 15]

Resource Consumption Analysis (3.2)(5.1)

TABLE & MATRIX FORMAT: Displays resources consumed by a

PROCESSOR; used by design engineers in evolving alternative
designs in terms of resources used. (BLOCK l.J

Security Analysis Report (4.2)(b.1)

LIST, MATRIX, NARRATIVE & UUTLINE FORMAr: Displays security
information about the objects; used to maintain-consistency
in defining the oojects that are of a classltied nature and
are to be factored into the nesiyn of in the target system.
LBLOCK 14]

Structure Report (3.2)(3.2X)L4.2) (5.1)

STRUCTURED-LIST FORMAT: Displays hierarchies of system
objects where the levels of Indenture represent the

hierarchy of the objects. Hierarcnles can be displayed to

represent system structure, system flow, ana dynamics.
Hierarchies are based on the relationships detilned between
the objects such as subpart/part, consist/contained,
receives/received, etc. The report is useful in evaluating
the consistency and Coopleteness of system hierarchies.
Version 3.2x has user optlons whicn dliO* aaoitiorai

information about PRUCES.ES to be displayed immediately
after eacn PHCESS in the report. Options 'include the

display ot data and control flow relationsnips, and rie-no,
tracekey, and source Intormation. in ettect the 3.2x
extensions combine some aspects of the Formatted Problem
Statement Report Into the Structure Report. ThIs enhances
the utility of the Structure Report, since more
informational value is provided in a single report as an
option to the user. EBLOCKS 4, 5, b, 8, 9 10, lit 12, 14)

LOGICON PALIL 81

Suoset Analysis Nepurt (4o2)(5.1)

MAINIX FORMAT: uisplays information about tT6, such as

nierdrcnical structure kusing SUBSETS/SUbbET) and tne

interiction of SETS to other SETS along with INPOXf1,

UUTPUTS, and ENTTIS *hIch make up the SET. Alas

consistency and completeness cnecKing of logical system aata

structures. EBbOCK 14]

Unit Structure (!.1)

S'RUCTURED-LIST FORMAT: Displays hierarcny or system Ur, IT

object as defined by ttie EOUIVALENT stdtement. ProviJes

some automated completeness and consistency cnecking.
EoLOCK 14J

Utilization Analysis Heport (4.2)(b.1)

STRUCTURED-LIST & MATRIX: Displays intormation about
PRUCESSES such as tne UTILIZES structure, and the

interaction between PROCESSES (via subpart, utilizes) in a
matrik format. Aids checking the consistency an5

completeness of the PROCESS structure. (BLOCKS 10, 14]

PAGL 82
LOGICOM

A.PL'.NID X I)

LAAMPLE ANAiYZLH HLPUk(T.>

The following 11 figures nave been selected from a variety of
Logicon requirements enqineering projects to Illustrate some of

tfe reports described in this guidebook. Trhese reports were
genereated using version 3.2X of PSL/PSA (i.e., CADSAI:
URL/URA). The figures included are as follows:

- Figure 1 Input-PSL As-Is Source bisting

Figure 2 Data Base Status report Lbogicon Extension)

Figure 3 Structure Report (Logicon Modifiea)

Figure 4 Process Chain Report

Figure 5 Data Process Report

Figure 6 Contents Report

Figure I Extended Picture Report

Figure 8 Name-Gen & Formatted Problem Statement Reports

Figure 9 Requirements Traceability Report (Logicon Extension)

Figure 10 Formatted Problem Statement report

Figure 11 Print Requirements Report (Logicon Extension)

LOGICON

41

4.

'4

0OE

C

0.

0

ta 0 C

-4. .4.4C

0.4) wJ4 0 4

V. L. 4

0 06 cm 0
'A U. 0i DiL a.

C) V w 0l

B.o 0 c 00 E

0.. i 0 L.
V.540 _1' wi

'a 0J 444U4,

EC C 100 Ii-

o w 0OC4. coSi
41 . 44 .0 00

'I '-' .4'S L 'a

L. i 4 a m 0 . 01 4.>
4 04.4 cy C3 5 4 * 0 4.)fi

.3 .4444 . 4 . . . 'S M0. U 10 1

u s c U. >' . SiC -06 to 4 Sj ", 45,
41 UU41 U. 0v 0u tl 10 1. .4> 11 C 06

= im -go -C .44 1''. 1 C- U 1 0 '4 M U J44u
W4 o e 6 4a Cs a44 >. i -iS . .4 C Go .VI Sj- i F IC Si So do mi .S4 4.44L0 0M.4 .- 10 'o aIa. S. C

.4 V "i 41 S C .4D :4 m4 . 5 j 4. L S 0 Sim .Si -1 S i 0 .' Si u
* c 0 Si0e.a- .:)4W m m4,m45 w .j -4*5 M0 t.~4 &. i .* 3 mV m V

> ra44Si.aa O.UMiV 0i C$ Iowu aCLOv.. 0 a a0 U ('U cU w v

0U 0"L 1 cJUi S-4>-410. 6 44iC4 .1S. 00 a Iv
0 C, 20 1. c -4 UC . 0 ".'S uiS OCii ,. Si W '-'.I.4.4C p 0jC

> Oll m..'L S- u 14 0 Ui4 S1. a 0Sr 0Cx6 1024 08V 0
(40 w 'o "O v~CO CLU " 40 Si4 0.1.5 a ,4It n -

.4* w.S. .'0., w c.'1 O7i) C: ... 0.i4(U44.h4. 440v

a' C, '4 0. a. 1. 14 Mi 'A 0 c4 Si 1 0 w I C C 44 .. SF0
Vtor t) C4,S 44.0.5 I0 4.0 0444V4 4 10*

C "i .. - C d4) 5 .m . .4" 0 0 .& . W. 4. , "4 '.S I1 . .U v. t"- n. 4 '
0 0 61 0 - 0 . 0 ' U.0 0 0 .0 0 0 CL) ' W o M'o44 I C' 1 0 I I

Si0 * S0 i4 4 I a -14. 1.. 0 -4 v - Si V -4 V -4 Silm

0L I i4i4 m . a. do I . a. u
in2 4' MUi ."-44 V, -U CO ViVi a 0 0V

CL2 0Sv0SH-> '4 .4 i 0.4 CL "CL %ZV "044 0.4AAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAA^A

*-D20-- n. n % 1>-N ' ^% JS .30 30 .. N'I j1.0
C -4 r 4 -4144- C -NI '."WIrw'

LOGICON

w. 0 2

C. 0 O3 3 40 C 443 3. -> n 4>D n

Q. 0 l 0 .0 a I 0 :) 0 C ' - -4 -4~ 0C
=1 0HC : : O 3 3 :0 0 C) C3 m > :: : '4 o3 00 v

4.4 C> D O3 . *: 3 ->C 10 0C
0. w C 1 0C

I.,~~~i 3 3 3 3 3 303 3

~ C) 3333 3303 330 . o 0

3-'~- 0 Q. 4444k

44 *4P) 0 c

00) . 1 4

0 3 Z4Y44 u

-4 v -).' 0. 4
u* Q. u 0U L .)UU -) Lj> 0 C 0

-~~~0 D . l 44
co. .4 3 0 3 3 3 3 3)0 0 c~ 44

w- 0.*o u

.0 0
U) to ic (x4. .4 x M4 '.. 10 * -0 V -Co

O .4 141 W14414 V41E4a14"1&. 41a 4U4141L14141LCc4
U) 0 sn' C 0C0U .Vm

u z C1 c 0 a 0 u1 0 "-

4.4~~ ~~ 4- 4 C .4 I.

0* 441 U.1 c

"DU0 14 OC 04c*0C

M &. u VI A. 06C 0 4
>I 'o 04.. 04S44 4141v

Ul C CM C.. -M. 4 . .O14.44.4*: c1414 I4.do 5e0 440to444E

w IV 04 0 .14 to -toCL0m0 44--u u 4-40&-4 C. CCUsc
cc. . 2 3 U) =4.....1 a C I S, I I I M44-4I w-wU Z.M .4 0 0** V O0-m

0 ' 1 .0 r) W 4 1* U4 -. 4., >4
O .. 4 . o.,," ,4C . >4 4) 4 in0c.

C44>M10. .t C .. e4 E 4 WV1 c dn06)-M
I4 I* e.. .4 i o - 4. .4 -0r C V

CL 0 -.- o. MA O "4 I 1 4> 0V31 L.r 41

ct .I44I. "4.4.4.4 "44w>w.4 O. II I I n. >4o.4w14 C 40
>4d 0 U0w0a 0L 0 41.&1 1 CI 41 0 4CC C 4*0 .1* 4 0 -.-

Cd m ui u u u m v4.400 w.#DI 1 : 40 " C) >4-Cl WO *4w" -1w..

U3 0 .4 0 M V U44.-44 0V CL. 0 UC-44>44 GI= 0 * M4

" .4 iI m 4444 wC>6..o.>"4:.vC0l..E2.4M4-4"00 00 *-

V -C .4 .. CL 6C 06 4.U E4 044*a..4.414w04 M U 06.4
" 11)1-44*.4-O34 C 4)4v V 04 ~
0 . 4 C I 44:.44.1~4*4>>.S >4'44 .0-

14 Cd 44114.4I44l034.44.1404
-C .4 3- t.4144 14444.114.44 w s a,-.4' t44*4V

*~ ~~~ 14 -4.*444 -4*.)4 0.s - - .444~ - -O- 0- - -4..-
x I I '4 U U4).44**:C.*4- C4I 3I4 a I.I.4I01.1401.

ac. 0A 000000I -M0 44 0.. B O 3'.1 4

hi IU.I II
- - I - -

WOGICON

'' 41

C:

41

C060

.0 U

0 .

9A

IV.4 CL

00.0 C

c . o

44
0

0 c 1 1

to 'o4

0 x

U"
"4> 41 -

C '04-

6 C

CP CL c. u

LOGUCON

ol.e

m CL

3. u -1 -:4V

.3 09 3'4 0 (36 F3)V 30

A.~~C .: v .3 . 3 *. .49 9

In 4j . I u09.44'~ .V 4' V In 9 9) 4) t Z

m 06 CL~ V39 . ..-. m 19M00 , 1 19199

u 19 £9 19911 V. 4) 4

1.9~ U . 6 * 4I T9 3 4 1 9 4 4 . 4 C4 4

.~ 0 49 3 9 .0 4) 19 . 0

o r 19 4). 34 .v 9: 0 090:141 0 3
u. " M 4. E9 t- E 4 CF V r4 0 4 9490 0.

L. . u. .4 14 W) t, 4 d) W. 3 3) :93 4
12~I F4 ' 4) V 40 0 6 04 94 ' 4 4 904 0 .9

O1 -4) 19 I41 E C 4 4 9 .9 4 9))0(4 1.4
.2) 19 0 .. 19 0) . :) 9 O 49 4 O .C £ 0 4 .)'

£9 & -4 4) U) 0 : £ 4 0 914 9 .9.. 4l 09
4 90. Fl o 44 4 9 . 3 9 N.09 0)4 1 0 0 419

941 4) 0 -4 4 49) 4 4.)4 ~ 4 93 0 4 0 4)04

C 4). 0. 14 0.0 0 v 44 0. 30. 0.4,0 19 94-99.99943

ADIT7 LOGICO#4 INC LEXINGTON NA F/49/
REB4IREMNTS ENGINEERING GUIDEBOOK. REQUIREMENTS ENGINEERING US--ETC(U
AlL So 0O0 SMITH DAA2976-D-100

UNCLASEtITFfl rSO-R4022VOL.1 I AIRMICS-90-9-2 N

2 f f fl l lf f fl l lf f

LGGICON

0

W.4.

00
vsI

40 0

C: t3. .to .

.4 &. - N. . ' .

r - -4 c4
41, V 4 -44 0.-1... U.''~ -0 . 0:1c0 L.uu54 M

40 M jM -t.14 . t,
v 00 0, 0E E ~ . .. 170 In j t us lZ.%.U4 ~4 &

&J -1a &n* 0 M-i Wl a CLa V S.I0
o.-c 0 IFaV1W&j . 4.0" W4- :4 .4 ~ .4 . VI 4

m 1. 0.0 '0 0. " LT 0
*1 1 41"1 a .1 . C & u 1. ala sa0a s a 0 '

to 4 owU 0 E 0 c t.I . "r

03. 6. 0 ..503 S.10 4
40.L 4.C M I4 0 4 I n1140>.1 1

V0 1 0. a 'a. .~a 4s EcC
1 4 0 Q. 0. C.4 .4& J -& UV- t . 5PJ 0 VS E03

0.. L.44 4'0 . L.& 06. Avm0mm 0 -4 C
43 13-0L C*.O IJV.- 0 .. LL 4, 0.'

0. c c 0 ID " fu2 450 0.04 0 a,0 0 dn . 0 I 1 0 1
43 V 0 0 0W 41 c ~ t 4' > > >. >3 u 0i f0 : .3 I0 C . 3 J,4 4 C E

0. & 0. a -444006 u.5c14V c0CIC.0C1W aOII~-C a u v.i.
V J 50.30.p3 V~ 0 4.0 LI.. ".0 TC 0141444 04 4 '4 0

14 c rj6 bi 0 1 0 041 > W c u u u . uu uC *14 104a 0 I. I . .3 V IL -40V-4.

>V .IV. OV0c04300 .43~. 0I14~0 0 00-43" 0 03 &. " W S.4.
c.0 01. be 031 4 4' ' n0 W ul 0.0 I A.,nC'n I LIIIro 0I40 X 40 0. n1n -&4I A

4v =P 0 I4 41VI .0 3 0 0 e 14 0 0' v' u 43 436 * 4 0 654 E' 14 434- V.L

* VI V 5 I V I" V 0-41 0.0 0.- -to In W'4 3 0 0 a 0 1 .0 g' M' I.4 0 A 0. 0-M M. C 30 £ 4

IOGUSCON

C6

0. w

0D

0

cC4

0
u

41

-44

Vb 0

44 w0

a , c4 m 1 -4

14 .0~ 10 4,r 1

1. 0 L 1 4ON I1
a 49 0 0 mW9 O 40

m, = ,W, 0& 441 91 0 6.§-
r- 44 c 1 0 0 U .j .14-

.4 . 0 . U 6 4 .Cv4 :1. C IQ ~ . 44' 4 90 O

44 . .C S.. C.44. 4, L: 0 . o

41 -4 44 01 0 j 6 .
is 40 1 , CL 4 0 :3f 0 A

w. 0~ aS.5 S 0 C4

-4 t, 44040.444,I4 44 0.44
a a a 10.CC 44..0.. 0 -4 " . v

I944I~-44~4gr.C4 C4 t4&4.4 IPV

0~4,~919104J0 r44a a uo .0
C..Dr.'Sj.00.4440l0U4 4.4

w, 'r w4. A4 4p n in. .4AI ninA 0 4, 4. I40 4

WOGIION

0, '

4,

06 --E I-- .- &. C x

I. 4 3. 4 u y w a . u , ro
0- .- e- - CP01 C P 0 06 P 0r

CL 0 L Lc w 0VIm a ma L -t.c 0

t . "4 " " .'
+ + _t-

+ +.

* - + 4 * +-- 4--+ + .-

am4 4t a .. 3 t, 8 36

334 5. W44 02 3W 41* 0
x* 0,4 3*C4 a. -4 N4 tr 4, 4
m.4 L.4 4 ,10 S.. &. W4 41 3 #j4j 4

444, 4. t 41 C , C 4 . ~ 4, ~ ~ ,4
394 .4C 1. .0 . 324 '4r CL 0

044 4. +3. +1 0r: .00 VS

4. O42 W
4.* .. 0. x u

3.. co c

fa D

: I 1

43 -1 44

016 * A.> 40ri'00

to 4,
0,+138 0.3Os 44

0 81 0 11

CL. L. X

0 0 'A

+ -4

VA, 4 0 m

LF~~li awaU. .00

o 4 c 0 .0, ty 0

hi . 0541 1. .4- . 1

o 1f0

CL 0 LAI I

4. 0-

ul4

4,0-444

N'4p

c c -4 4

"0 3 aU.

404
c 4 0 4m

4,

c4,14

0..

0~1C

'.4 0j G
440 -1 E4 4

v ~ C ADG 1E

44 " 44 A
064 C t 041 4,

&U4 44

DU4. -4A

uE C .

0.4 C 4
&.A 34 W40

I-, u . a 4 :

0 4406

= 0 44
0c04 r I

64 C luc

LOGCON

1*3. A0 0 40 0 W0

u v 4, u u v U U j U U U U u U U C,, U U u UUU uU
0000000oo0o00000oo00 0oo000o
CL1 06 M . .L 06. 4. S06 CL IL %; -. 0.6 4.6 M M .06 06 0, o. a" .a .4. LL .C" ."LL C a .a

0U

'0 .2 r 1.4

I . . C e.. c4 4) 1 U -0. -
C 2.E 10 "0 0 Z, u .I .4 .O.2 .
.J 0 410- . V 1 1 a 0 a . 0-.4U 'A-4C04 U I =
1 - 44414 a' . 1, 1 1 a I NU .0 14. 2-C0

.1 . 6.1.441 1 0 c I c I..II4

2 0644. j11 14 C1 0~ 1444-U1-
* 3. 4 41 I** 4 . " 4. 6 C C n~ 0 W 444- C C C b..e

u t2 120 c .. c Iv 0 C6 2 4 4 1 4 . 1 4 '0 I

E ' * 41>,.0. - SC 4 W & &AV4 &A W 04-4. W' WI I4I.2 Q-4 40
0 v 0 0 v 41C44JU U 0 m M M'A4 Wb. CP

01 UU- 4 .- 4 83 64c11 14 4 41 0- 41
C 06'CUE> * 1 4 c c c C C c c C C 12F'aUU-.41.m 0

2 L "31644 oo 'e Z..C1.. 0..0 4.i t, 1.4..4.C. -4 1 4iww 4o1.4

-4 ~~~ ~- -*4>4C CC1CCC 00 22 NU

CLC

W 0*

I* . *
41JCC C

C. a1 a :

4 41

w 0 0 41 4
a 0. 0.n

101 00. 14.&
Z4 0. e4 . EI aIa, '

4. ' 41. 0 a 14 0 0.11014414 . a ' .c
o 41 do. Il 0 c u u j O0l v a I M, $.,

10 W 1 41 6.141i 0 4 du I c 6.. 4144 s 0
c 41 .4 1.S.t.. "4 -4 1. -.4 4 4 A. C, 1.3

An64j*A& 0. 02 4 ~11 4 4 4 0 4 c44

=:0ov 06 6' l l w 41
.4 r uU", j- 0 VWW0040

U .4 1 -. 4 0
.D . 6 . 1 s'.00uIL

i .10 4. -4 641 A U >
O0 U 41 0 1 0 a

lu 4. N" 41 v3 0 2 1 '4 0 > >

441.4. 41 0.4 0vI. e j V F c.

o C .4416.1 L-4..424 00 u>
0 U a444.4

5
v c1. W14 0 c

-4~ ou 4 mt0.241 44o.4g"4 V e41' 4.
4.'~~~ -41-04- 0-0- -63 -4- -

O 41 0~U 1.4 024.4C40414 U2A

'44

j . - 4- -4 +4 -4 4 444*. 4. 4

06 e N I"

a~' I I 0 0
'.2 a a0 a4 -4 a4+

'40~ '.. 0 '4 A

- 0 a Ia
to -A 'L.A 06 a0

I la j 0

-* c C4 a, '

-4 .40 a a aa
n 0 04'~

41 Liv ou a a aa
-4).' 4.0 -o a1 a0 a .

06 41 0 C 4 C04 a6 a a4 a4+- .
14.14f .41.- a a a

04. 0..u .-I- aA aA a aA .
ca aa. .0

a0 1 u o .. o 1.. a 0 a0 a0 a34S .W L

'o I .ig C C a
a9 a

*1 0 a. 0 0~ a 0 a a

10, 1: + +- -. -a - - a

*. a u0 . co

WGICON

1.3.

0.0

iu 0

6,0

1C

40

. C:

C6

-~ 06
=1~£ J .64

!-4J1--4

V, w -4- 4

-~~~~. - 4 .0

-4 *4. w!U ,)acs

0 0 b 0 .

.4 C44L0 4~4 0 0A &

b. w cC C
0 43 C

4 00 v 0

a. It U. U . U 00 1 .4C 0 -6-

-. 0. 0, 0 0

Co -43 01 c - 0 C 0 0 c
4 433OS. a :. a 01 3 3.

6j L.. OS0.. A 06 0 U £40 JO a

C ~ ~ N A. C A0'. n.. vi0 - a
PC c 4 0..0 3-~ 3.4 M.. 4 3.

-'4 ~ ~ u a, 0- to: nS g ' -4~C 44 4 m.4 v. j^ - Vo OS 00 C, 0 e4

~'4.V~'4& 4S4 4 5 40 4-l£0. 4~0. 0

LOGICON

+ +

Ia . I 1 1 a a 1 a a o-a
*~~~~~~~" ID~la ~iIaaaaL

1

a-, o 0 V, 0L. m 0a. o.
01 v 'a Il "ial ao o i a' v o a.4 w a1

M c~ , w alc s v44, c 014 c6 0c 1 ". &. w
I 0. o 1 "001 a ao C a aoa a ,
a !f a. 1 -D t a 1 -6 I u !. a)
+ a a a a + ~1

4 4 4..444 4~l444 4.4+Ii 2

*-.--.i-7 +' 4 .

aa > 15 > ma > ma > u*-
.4 t) a o a. Ij 0 .. a 0 ..4 .-) .

4 a 1 .0 41 L.' 01 1,-' 0 1.214. 0 -,I -J
oL a.. 04 . 41 T- 0c1. O .. a.". m -

+. +- - +--4 + - -+-- 4 +2 +. +

o Q , a)

44 - + *--- *--
W a a a a a a - .

a4 1 a> I a :) E
aL I a. I 4 " I oC

o L , o . . u 0 0. alo-.a-a
.4a .0 - -4 0 "4 w-L' 4) f.a1 .9 0 0

W 4 o Go a o ao . m-wf Ia -".) , .o44 0>. I
V LVI4 u G. "4 oc A v1 1 Ca'4,.4 C

x W .aV .l ww .0I C1 -4 4o 410 a- 413 V V ina
& Lm a C4o a -a a 4* a o i .a aE1 U G6 M 0 .4v 1.

.2 +--4 + -4 + + + +-4

m. j a . 01w-a

o1 --1 IV a.a4 U a a v a

17 4 4) 0r1.. 0 VEj v ci. .0 a

1 0 4 I a v ov41 a.) uO I~ ow0 aIva a4
.4 C 0~bLI o.-a. oaoa~ oaoa 1~To

o EUO-ac.

Ol I - L

O CU a

LOGICON

06 L r

04

0.0

oV 0410A

V 50 0 0

4A 3C E= 4o

cU 0 r

4 '0 41

40.

w4 6. L.c
v 0C

C 41

z 41 'o 41.a

v, c 0 'V.

A 0 W. I- M24
4,~.4 41 , 1'.'

N 0 -L O

pq~~~~~~1 00000o 6 - 1 .1a

936 a a. a Ul v 40 V.c

.0 Q' a42 " o 4 . .>

c 4j >.. > 0 w4

IA4 W. 1 41 4, 04 . 4, r
'.4 a' u ' -

0 0 44 0 416v
.30 - 3V 4 s1 1 cc c .4444

- I. . 0 e C00
0 .4 4 c 4,w

ha 6V5 1. 1 1 -4 '0. C -4 J
f" I.. H' 41' 4A Id 1500

I ,. 0u. .l u. 41 61. C1.CIul-
&j c06wI .D ".o we *) 31 $-0 .

- c, utoI 41.

4~ ~ 0 C I . .J144

vi . U . .0 14 .1 & 'V4

L. . V I 0 "4 414 Z... 1 5O w1 o 40

2 0' 1. 0UU c I. In n14~.4
hI 2j 0. 0. a.0 .4 V'...C4 2 >0 *.4C.

do 0 44. o 14 - 1 0 0 .21 U
&U w. 114 ' O4.. 2.1

41 4 '.4 I..10414 *41. 10. .. U..6

(3 ~ ~~~ ~~~~~~ 41 o m. o304.lW .- 41 4.0.r(40.

LOGUCON

>4. > -> I 0, 1 4 w 4L

41. 441- w .)

I1 @4 c-1 4

44. >44 0' .0I f,4 04t04..w

4-4 ~444-c c C w. F4U.'.' c-'. a4 m 1 '04.W-400

0. C . 44 0 C 0 4) C - -~ -4 d, C:44 - 4 - 1. .

v4 > 4 E~ > 44 >4 10. L. >. I c w c. c w' (u C C c z , -ed 0m_
V- "44 UCC-U4C-444"-&.4444CC4N4N 0 0 .. 41 'a t4

441 :1 WE 40 4 1 Q, 4 OE 1 :1 1 1- VC. - MN4- CC.4- 0- .

> C .4-14 0 1-1 1 1_ 0.44 >Or, I7 >> >4'Q~ I I4 IuIA II
'0. 444>>E>E>40 444 >04C.4~~4.44~,.442.44 4.

Dc 0Cee 44 0 u F 0 0 - vJ4V I4 '0*w404'w I Q.440 0 0 w 0 Q 4) 0 .0

63 14 14~4 .2 F I .. 4 I I .. 0.N

ac' 4.. .>. >1 CG C ., . 4 0 F0 M. 0404G.44 w44044 .1~ w7.>
m4 CL4441141 E EE aCL . a444aU= U E mm 4 'a m IM . O4 U TID 0 3 1 41a. -

-. ,. 0 C -

4.40~ ~ 4. 4 u

00; 1; 4 C. 44 -.-. 1

0~ ~ .-- -. . . 1 . 4 C . C

* '4 .. n.n ..4 .-4,04,4 4.0 .44. 4.4,4.4,4.4-, 0 u

.4~I e0.4 1

H0 4-' 00

to- - - --ww - - , - - - - - - - - -4C 39 4 0C

c ."" c. A. 1 1 1 14 1 41. 4 4 1 41 1 1 4 -4 m > 4
o c4 r 444444444a)444444444v44w44".444444.444ow.440 44A.44o-4

E. a.4 44U441t

In 0 w0 @4 W

>4 -4 m- 0.400o . u~~ vuu u1

.i "4 VO O C 000om41" 0 4.4 .- 4a. aIaI 60 0
x 1 441 .4444 044) am 4-44. m~ 'a.4. * j 004444 ""-

11 a) %, 4v444 4 CCCC. 4 p 404 4 14 444444.44 w. v .40kD..V c 000

'o :4 I 444E4111444244- TsV n' 44443011' V1 L La 41r a(

x- . . 44 4 4@ 00 .4. 44 4 0 0' 0 4 04 404

co3 I I'4..4.444J4 I.4.--144.-,.44--CCCC I44 I ' I
F-44444 .44 V, F E u* F 4 t444r.4.4 f.4 k4 4. L4 44 e. 4F 44 V-4444~.444, I-- F

LWGICON

-C

7) U
(2 Lt,.

m c
>~

in 10

.4- 0 r

E~~~~ -4' 11E 31

04 uV
.4 0 w

.e 0m

4~~- . .C 2.F a

j~~~ .4 W '. C

>~~~ 0. 0 .lo(
x j x L u E E .a,

0~~~~ C'41Ica

4~~~. C 0 M 1

W.,~~~~0 32S '

It~~ 00, 1

0E m, * am4 m -W V0 04-
.3 L 00 0 4-4 041 c v11- D-

41 a,-4 4 44 44 vFV> I. U 2 4

-3 40 0- C 0 v EAV 4 1 0414r1.0
*V 044 w0 C WIE V 44go6 0 W

z 1. , u ,M"mw4 006 a6 4120
Li V CL I t, M >

. -W (36 C.- C0 04. 42L

t 0 04 0 041- 00 0 0 0

x a,4 M 10 0C V

.4 'o4 .4 u t2 . v D4-4
u c at W00 414 .) .4.4

n . .4 k. 0. 0 F f C.2 .
w24. I.44 4 r. 1 .c

(4> w 0 In4 C 4. 44 00 44 4
0- U4 C C4 0 C0 4 0. I0 r44 LP44

fx 0 4222 w0- VI 0) A1 0
!,2 44 v > Q L 0 4 C x . 2 4j .20L0
In C: EX0 'o 0 0 T4 m' &

0 44 44 r 0 0>4 V)VI I w4. 44

, a " 0, 2 .12 1.- 14 4-44 2 - C W c 0 44 . 2

41 do40 m0 4 10> 40 1VI ~ 4 4

Go2 0 0 . 2t 4. 0 U44. 0 I 2244 U 24 4

-44 0 .4 I0 w, A4 .4 2 44 r- m 42 .4.. 044

LOGICON

4IV .02(

c- 4. V

C z 4

0C0

C, . ICU -0 F

to M 0 r-C.

r-4. w4 .4 zc

4. 0' x. C,

m 0 Cp I 10 0 IF F

Lo4 V-) 3 7t 0
2:~~~~~ La4)1)04C.D I

i-, 4-uu, C-.4-
w t~~c C 4 1 OMC

u CL 0 C:E, 1 '1U C:
M a 0 0-'

= 1 I C L 1 . 0 " - 0 -1 0 .
m .0 . F- 0 4 - 0 A > 0-)-0- 0 0

CL~~~V 04 0 4 T 4v U 0
=1~~4- a,, m 4cc C

w 6n - 44 V. .40041-41.T

o 4 4. v 4 -4 0-' 414)0 E0.4
UUL -.-- wo C .o.c

A4 0 0 0 0 >'

4- 0 0 0 .04,4
0 C: -4.- C 4- W0 r.444 W - L

.00 4,04 114 1 04 rC0-

0-4 C444 c - 0 .0 0E.C4L

-0U . ftl' -C DC DC 0 414 In %n 4
1 040 044 'n V 40 1 0 I44'.C v].4 0.

13 .J>4. 0. 0 C, a00 44.C' 0- 4
40~~~~ ~~~~ C.)42 4 3 0 4 C 4 '. .. L

-4~~~ 44 OUV m(2 w0 0 w 4 C E 1 14

w- !".4 CC 04. 4c C-.41c w C -2. 4-4
4 3 4-U04 ' 3O 4 tV
C) - ~ 440 C 0 4 0. C . -
IxI*4 44. 44 L 44.4

4. 444 44 . 4 4413n44E.4-

